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CONFIDENCE INTERVALS

Chapter

6
• introduce the concept of the standard error to

quantify the degree of uncertainty in an estimated
quantity and compare it with the standard
deviation.

• demonstrate the construction and interpretation of
confidence intervals for means.

• provide a method to determine the sample size that
is needed to achieve a desired level of accuracy.

• consider the conditions under which the use of a
confidence interval is valid.

• introduce the standard error of a difference in
sample means.

• demonstrate the construction and interpretation
of confidence intervals for differences between
means.

Objectives
In this chapter we will begin a formal study of statistical inference. We will

6.1 Statistical Estimation
In this chapter we undertake our first substantial adventure into statistical infer-
ence. Recall that statistical inference is based on the random sampling model: We
view our data as a random sample from some population, and we use the informa-
tion in the sample to infer facts about the population. Statistical estimation is a form
of statistical inference in which we use the data to (1) determine an estimate of
some feature of the population and (2) assess the precision of the estimate. Let us
consider an example.

Butterfly Wings As part of a larger study of body composition, researchers captured
14 male Monarch butterflies at Oceano Dunes State Park in California and
measured wing area (in cm2). The data are given in Table 6.1.1.1

Example
6.1.1

Table 6.1.1 Wing areas of male Monarch butterflies

Wing area (cm2)

33.9 33.0 30.6 36.6 36.5

34.0 36.1 32.0 28.0 32.0

32.2 32.2 32.3 30.0

For these data, the mean and standard deviation are

yq = 32.8143 L 32.81cm2 and s = 2.4757 L 2.48cm2
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Suppose we regard the 14 observations as a random sample from a population; the
population could be described by (among other things) its mean, , and its standard
deviation, . We might define and verbally as follows:

mean wing area of male Monarch butterflies in the
Oceano Dunes region

SD of wing area of male Monarch butterflies in the
Oceano Dunes region

It is natural to estimate by the sample mean and by the sample standard
deviation. Thus, from the data on the 14 butterflies,

32.81 is an estimate of .

2.48 is an estimate of .

We know that these estimates are subject to sampling error. Note that we are
not speaking merely of measurement error; no matter how accurately each
individual butterfly was measured, the sample information is imperfect due to the
fact that only 14 butterflies were measured, rather than the entire population of
butterflies. �

In general, for a sample of observations on a quantitative variable , the sample
mean and SD are estimates of the population mean and SD:

is an estimate of .

is an estimate of .

The notation for these means and SDs is summarized schematically in 
Figure 6.1.1.
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Figure 6.1.1 Notation for
means and SDs of sample
and population

Our goal is to estimate . We will see how to assess the reliability or preci-
sion of this estimate, and how to plan a study large enough to attain a desired 
precision.

6.2 Standard Error of the Mean
It is intuitively reasonable that the sample mean should be an estimate of . It
is not so obvious how to determine the reliability of the estimate. As an estimate of

, the sample mean is imprecise to the extent that it is affected by sampling error.
In Section 5.3 we saw that the magnitude of the sampling error—that is, the amount
of discrepancy between and —is described (in a probability sense) by the
sampling distribution of . The standard deviation of the sampling distribution 
of is

s
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=
s1n

Y
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*Some statisticians prefer to reserve the term “standard error” for and to call the “estimated
standard error.”

s/1ns/1n

Since is an estimate of , a natural estimate of would be ; this quantity 

is called the standard error of the mean. We will denote it as or sometimes
simply SE.*

SEY

s1ns1nss

†Rounding Summary Statistics
For reporting the mean, standard deviation, and standard error of the mean, the following procedure is
recommended:

1. Round the SE to two significant digits.
2. Round and to match the SE with respect to the decimal position of the last significant digit. (The

concept of significant digits is reviewed in Appendix 6.1.) For example, if the SE is rounded to the nearest
hundredth, then and are also rounded to the nearest hundredth.syq

syq

Definition The standard error of the mean is defined as

SEY =
s1n

The following example illustrates the definition.

Butterfly Wings For the Monarch butterfly data of Example 6.1.1, we have ,
and . The standard error of the

mean is

†
�

As we have seen, the SE is an estimate of . On a more practical level, the
SE can be interpreted in terms of the expected sampling error: Roughly speaking,
the difference between and is rarely more than a few standard errors. Indeed, we
expect to be within about one standard error of quite often. Thus, the standard
error is a measure of the reliability or precision of as an estimate of ; the smaller
the SE, the more precise the estimate. Notice how the SE incorporates the two
factors that affect reliability: (1) the inherent variability of the observations
(expressed through ), and (2) the sample size ( ).

Standard Error versus Standard Deviation

The terms “standard error” and “standard deviation” are sometimes confused. It is
extremely important to distinguish between standard error (SE) and standard devi-
ation ( , or SD). These two quantities describe entirely different aspects of the data.
The SD describes the dispersion of the data, while the SE describes the unreliability
(due to sampling error) in the mean of the sample as an estimate of the mean of the
population. Let us consider a concrete example.

Lamb Birthweights A geneticist weighed 28 female lambs at birth. The lambs were all
born in April, were all the same breed (Rambouillet), and were all single births (no

Example
6.2.2

s

ns

myq
myq

myq

s
Y

=
2.4757114

= 0.6617cm2,which we will round to 0.66 cm2

 SEY =
s1n

s = 2.4757 L 2.48cm2yq = 32.8143 L 32.81cm2
n = 14Example

6.2.1
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twins). The diet and other environmental conditions were the same for all the
parents. The birthweights are shown in Table 6.2.1.2

For these data, the mean is , the standard deviation is ,
and the standard error is . The SD, , describes the variability of
birthweights among the lambs in the sample, while the SE indicates the variability
associated with the sample mean (5.17 kg), viewed as an estimate of the population
mean birthweight. This distinction is emphasized in Figure 6.2.1, which shows a
histogram of the lamb birthweight data; the SD is indicated as a deviation from ,
while the SE is indicated as variability associated with itself. �yq

yq

sSE = 0.12kg
s = 0.65kgyq = 5.17kg

s
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Figure 6.2.1 Birthweights
of twenty-eight lambs

Table 6.2.1 Birthweights of twenty-eight Rambouillet lambs

Birthweight (kg)

4.3 5.2 6.2 6.7 5.3 4.9 4.7

5.5 5.3 4.0 4.9 5.2 4.9 5.3

5.4 5.5 3.6 5.8 5.6 5.0 5.2

5.8 6.1 4.9 4.5 4.8 5.4 4.7

Another way to highlight the contrast between the SE and the SD is to 
consider samples of various sizes.As the sample size increases, the sample mean and
SD tend to approach more closely the population mean and SD; indeed, the distri-
bution of the data tends to approach the population distribution. The standard
error, by contrast, tends to decrease as increases; when is very large, the SE is
very small and so the sample mean is a very precise estimate of the population
mean. The following example illustrates this effect.

Lamb Birthweights Suppose we regard the birthweight data of Example 6.2.2 as a
sample of size from a population, and consider what would happen if we
were to choose larger samples from the same population—that is, if we were to

n = 28
Example

6.2.3

nn
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measure the birthweights of additional female Rambouillet lambs born under the
specified conditions. Figure 6.2.2 shows the kind of results we might expect; the
values given are fictitious but realistic. For very large , and would be very
close to and , where

Mean birthweight of female Rambouillet lambs born under the condi-
tions described

and

Standard deviation of birthweights of female Rambouillet lambs born
under the conditions described. �

Graphical Presentation of the SE and the SD

The clarity and impact of a scientific report can be greatly enhanced by well-
designed displays of the data. Data can be displayed graphically or in a table. We
briefly discuss some of the options.

Let us first consider graphical presentation of data. Here is an example.

MAO and Schizophrenia The enzyme monoamine oxidase (MAO) is of interest in the
study of human behavior. Figures 6.2.3 and 6.2.4 display measurements of MAO
activity in the blood platelets in five groups of people: Groups I, II, and III are three

Example
6.2.4

s =

m =

sm

syqn

n = 28 n = 280 n = 2,800 n:q

yq 5.17 5.19 5.14 yq: m
s 0.65 0.67 0.65 s: s
SE 0.12 0.040 0.012 SE: 0
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Figure 6.2.3 MAO data
displayed as using
(a) an interval plot and
(b) a bargraph with
standard error bars

yq ; SE

Figure 6.2.2 Samples of
various sizes from the lamb
birthweight population



Section 6.2 Standard Error of the Mean 175

20

15

10

5

0

I II III IV V Grp
18 16 8 348 332 n

M
A

O
 a

ct
iv

it
y 

(n
m

ol
/)

10
8  p

la
te

le
ts

/h
r

(a)

I II III IV V Grp
18 16 8 348 332 n

0

5

10

15

20

M
A

O
 a

ct
iv

it
y 

(n
m

ol
/)

10
8  p

la
te

le
ts

/h
r

(b)

Figure 6.2.4 MAO data
displayed as using
(a) an interval plot and
(b) a bargraph with
standard deviation bars

yq ; SD

diagnostic categories of schizophrenic patients (see Example 1.1.4), and groups IV
and V are healthy male and female controls.3 The MAO activity values are
expressed as nmol benzylaldehyde product per 108 platelets per hour. In both
Figures 6.2.3 and 6.2.4, the dots (a) or bars (b) represent the group means; the
vertical lines represent in Figure 6.2.3 and in Figure 6.2.4.

Figures 6.2.3 and 6.2.4 convey very different information. Figure 6.2.3 conveys
(1) the mean MAO value in each group, and (2) the reliability of each group mean,
viewed as an estimate of its respective population mean. Figure 6.2.4 conveys (1) the
mean MAO value in each group, and (2) the variability of MAO within each group.
For instance, group V shows greater variability of MAO than group I (Figure 6.2.4)
but has a much smaller standard error (Figure 6.2.3) because it is a much larger
group.

Figure 6.2.3 invites the viewer to compare the means and gives some indication
of the reliability of the comparisons. (But a full discussion of comparison of two or
more means must wait until Chapter 7 and later chapters.) Figure 6.2.4 invites the
viewer to compare the means and also to compare the standard deviations. Further-
more, Figure 6.2.4 gives the viewer some information about the extent of overlap of
the MAO values in the various groups. For instance, consider groups IV and V;
whereas they appear quite “separate” in Figure 6.2.3, we can easily see from
Figure 6.2.4 that there is considerable overlap of individual MAO values in the two
groups. �

While we have displayed the MAO data using four individual plots in
Figures 6.2.3 and 6.2.4, we typically would choose only one of these to publish in a
report. Choosing between the interval plots and bargraphs is a matter of personal
preference and style. And, as previously mentioned, choosing whether the interval
bars represent the SD or SE will depend on whether we wish to emphasize a
comparison of the means (SE), or more simply a summary of the variability in our
observed data (SD).*

In some scientific reports, data are summarized in tables rather than graph-
ically. Table 6.2.2 shows a tabular summary for the MAO data of Example 6.2.4. As
with the preceding graphs, when formally presenting results, one typically displays
either the SD or SE, but not both.

;  SD;  SE

*To present a slightly simpler graphic, often only the “upper” error bars (SE or SD) on bargraphs are
displayed.



Exercises 6.2.1–6.2.7
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6.2.1 A pharmacologist measured the concentration of
dopamine in the brains of several rats. The mean concen-
tration was 1,269 ng/gm and the standard deviation was
145 ng/gm.4 What was the standard error of the mean if
(a) 8 rats were measured?
(b) 30 rats were measured?

6.2.2 An agronomist measured the heights of corn plants.5

The mean height was 220 cm and the standard deviation
was 15 cm. Calculate the standard error of the mean if
(a) (b)

6.2.3 In evaluating a forage crop, it is important to meas-
ure the concentration of various constituents in the plant
tissue. In a study of the reliability of such measurements,
a batch of alfalfa was dried, ground, and passed through a
fine screen. Five small (0.3 gm) aliquots of the alfalfa
were then analyzed for their content of insoluble ash.6

The results (gm/kg) were as follows:

n = 100n = 25

n

(a) Calculate the standard error of the mean.
(b) Construct a histogram of the data and indicate the

intervals and on your histogram.
(See Figure 6.2.1.)

6.2.5 Refer to the mouse data of Exercise 6.2.4. Suppose
the zoologist were to measure 500 additional animals from
the same population. Based on the data in Exercise 6.2.4
(a) What would you predict would be the standard devi-

ation of the 500 new measurements?
(b) What would you predict would be the standard error

of the mean for the 500 new measurements?

6.2.6 In a report of a pharmacological study, the
experimental animals were described as follows:8 “Rats
weighing were injected ...” with a certain
chemical, and then certain measurements were made on
the rats. If the author intends to convey the degree of
homogeneity of the group of experimental animals, then
should the 10 gm be the SD or the SE? Explain.

6.2.7 For each of the following, decide whether the
description fits the SD or the SE.

(a) This quantity is a measure of the accuracy of the
sample mean as an estimate of the population
mean.

(b) This quantity tends to stay the same as the sample
size goes up.

(c) This quantity tends to go down as the sample size
goes up.

150 ; 10 gm

yq ; SEyq ; SD

10.0 8.9 9.1 11.7 7.9

Table 6.2.2 MAO activity in five groups of people

MAO activity (nmol/108 platelets/hr)

Group n Mean SE SD

I 18 9.81 0.85 3.62

II 16 6.28 0.72 2.88

III 8 5.97 1.13 3.19

IV 348 11.04 0.30 5.59

V 332 13.29 0.30 5.50

TAIL LENGTH (mm) NUMBER OF MICE

[52, 54) 1

[54, 56) 3

[56, 58) 11

[58, 60) 18

[60, 62) 21

[62, 64) 20

[64, 66) 9

[66, 68) 2

[68, 70) 1

Total 86

For these data, calculate the mean, the standard devia-
tion, and the standard error of the mean.

6.2.4 A zoologist measured tail length in 86 individuals,
all in the one-year age group, of the deermouse
Peromyscus. The mean length was 60.43 mm and the
standard deviation was 3.06 mm. The table presents a
frequency distribution of the data.7
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6.3 Confidence Interval for 
In Section 6.2 we said that the standard error of the mean (the SE) measures how far

is likely to be from the population mean . In this section we make that idea precise.

Confidence Interval for : Basic Idea

Figure 6.3.1 is a drawing of an invisible man walking his dog. The dog, which is
visible, is on an invisible spring-loaded leash. The tension on the spring is such that
the dog is within 1 SE of the man about two-thirds of the time. The dog is within 2
standard errors of the man 95% of the time. Only 5% of the time is the dog more
than 2 SEs from the man—unless the leash breaks, in which case the dog could be
anywhere. We can see the dog, but we would like to know where the man is. Since
the man and the dog are usually within 2 SEs of each other, we can take the interval
“ ” as an interval that typically would include the man. Indeed, we
could say that we are 95% confident that the man is in this interval.

This is the basic idea of a confidence interval. We would like to know the value
of the population mean —which corresponds to the man—but we cannot see it
directly. What we can see is the sample mean —which corresponds to the dog.
We use what we can see, , together with the standard error, which we can calcu-
late from the data, as a way of constructing an interval that we hope will include
what we cannot see, the population mean . We call the interval “position of the
dog ” a 95% confidence interval for the position of the man. [This all
depends on having a model that is correct: We said that if the leash breaks, then
knowing where the dog is doesn’t tell us much about where the man is. Likewise,
if our statistical model is wrong (for example, if we have a biased sample), then
knowing doesn’t tell us much about !]

Confidence Interval for : Mathematics

In the invisible man analogy,* we said that the dog is within 1 SE of the man about
two-thirds of the time and within 2 SEs of the man 95% of the time.This is based on
the idea of the sampling distribution of when we have a random sample from a
normal distribution. If is a standard normal random variable, then the probability
that is between is about 95%. More precisely, .

From Chapter 5 we know that if has a normal distribution, then has a 
standard normal (Z) distribution, so

(6.3.1)

Thus,

and

so

 Pr{ Y - 1.96 * s/1n 6 m 6 Y + 1.96 * s/1n} = 0.95

 Pr{-Y - 1.96 * s/1n 6 -m 6 -Y + 1.96 * s/1n} = 0.95

 Pr{-1.96 * s/1n 6 Y - m 6 1.96 * s/1n} = 0.95

 Prb-1.96 6
Y - m
s/1n 6 1.96 r = 0.95

Y - m
s/1nY

= 0.95 Pr {-1.96 6 Z 6 1.96}; 2Z
Z

Y

m

myq

; 2 * SE
m

yq
yq

m

dog ; 2 * SE

m

myq

m

Figure 6.3.1 Invisible man
walking his dog

*Credit for this analogy is due to Geoff Jowett.
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That is, the interval

(6.3.2)

will contain for 95% of all samples.
The interval (6.3.2) cannot be used for data analysis because it contains a

quantity—namely, —that cannot be determined from the data. If we replace by
its estimate—namely, —then we can calculate an interval from the data, but what
happens to the 95% interpretation? Fortunately, it turns out that there is an escape
from this dilemma. The escape was discovered by a British scientist named W. S.
Gosset, who was employed by the Guinness Brewery. He published his findings
in 1908 under the pseudonym “Student,” and the method has borne his name
ever since.9 “Student” discovered that, if the data come from a normal population
and if we replace in the interval (6.3.2) by the sample SD, , then the 95% 

interpretation can be preserved if the multiplier of is replaced by 

a suitable quantity; the new quantity is denoted and is related to a distribution
known as Student’s  distribution.

Student’s Distribution

The Student’s t distributions are theoretical continuous distributions that are used
for many purposes in statistics, including the construction of confidence intervals.
The exact shape of a Student’s distribution depends on a quantity called “degrees
of freedom,” abbreviated “df.” Figure 6.3.2 shows the density curves of two
Student’s distributions with and , and also a normal curve.A curve
is symmetric and bell shaped like the normal curve but has a larger standard
deviation. As the df increase, the curves approach the normal curve; thus, the
normal curve can be regarded as a curve with infinite df .(df = q)t

t

tdf = 10df = 3t

t

t

t
t0.025

s1n (that is, 1.96)

ss

s
ss

m

Y ; 1.96
s1n

−6 −4 −2 0 2 4 6

Figure 6.3.2 Two
Student’s curves (dotted,

and dashed,
) and a normal

curve (df = q)
df = 10
df = 3

t

*In some statistics textbooks, you may find other notations, such as or , rather than .t0.025t0.975t0.05

The quantity is called the “two-tailed 5% critical value” of Student’s 
distribution and is defined to be the value such that the interval between 

and contains 95% of the area under the curve, as shown in Figure 6.3.3.* That
is, the combined area in the two tails—below and above —is 5%. The
total shaded area in Figure 6.3.3 is equal to 0.05; note that the shaded area consists
of two “pieces” of area 0.025 each.

Critical values of Student’s distribution are tabulated in Table 4. The values of
are shown in the column headed “Upper Tail Probability 0.025.” If you glance

down this column, you will see that the values of decrease as the df increase; for
(that is, for the normal distribution) the value is . You can

confirm from Table 3 that the interval (on the scale) contains 95% of the
area under a normal curve.

Z;1.96
t0.025 = 1.960df = q

t0.025

t0.025

t

+ t0.025- t0.025

+ t0.025

- t0.025t
t0.025
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0.025 0.025
0.95

0 t0.025

t
−t0.025

Figure 6.3.3 Definition of
the critical value t0.025

Other columns of Table 4 show other critical values, which are defined analogously;
for instance, the contains 90% of the area under a Student’s curve.

Confidence Interval for : Method

We describe Student’s method for constructing a confidence interval for , based on
a random sample from a normal population. First, suppose we have chosen a confi-
dence level equal to 95% (i.e., we wish to be 95% confident). To construct a 95%
confidence interval for , we compute the lower and upper limits of the interval as

that is,

where the critical value is determined from Student’s distribution with

The following example illustrates the construction of a confidence interval.

Butterfly Wings For the Monarch butterfly data of Example 6.1.1, we have ,
, and . Figure 6.3.4 shows a histogram and a normal

probability plot of the data; these support the belief that the data came from a
normal population. We have 14 observations, so the value of df is

From Table 4 we find
t0.025 = 2.160

df = n - 1 = 14 - 1 = 13

s = 2.4757cm2yq = 32.8143cm2
n = 14Example

6.3.1

df = n - 1

tt0.025

yq ; t0.025
s1n
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plot (b) of butterfly wings
data
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The 95% confidence interval for is

or, approximately,

The confidence interval may be left in this form. Alternatively, the endpoints of the
interval may be explicitly calculated as

and the interval may be written compactly as

or in a more complete form as the following “confidence statement”:

The confidence statement asserts that the population mean wing area of male
Monarch butterflies in the Oceano Dunes region of California is between 31.4 cm2

and 34.2 cm2 with 95% confidence. �

The interpretation of the “95% confidence” will be discussed after the next example.
Confidence coefficients other than 95% are used analogously. For instance, a

90% confidence interval for is constructed using instead of as follows:

The following is an example.

Butterfly Wings From Table 4, we find that with . Thus, the 90%
confidence interval for from the butterfly wings data is

or
�

As you see, the choice of a confidence level is somewhat arbitrary. For the butterfly
wings data, the 95% confidence interval is

and the 90% confidence interval is

Thus, the 90% confidence interval is narrower than the 95% confidence interval. If
we want to be 95% confident that our interval contains , then we need a wider
interval than we would need if we wanted to be only 90% confident: The higher the
confidence level, the wider the confidence interval (for a fixed sample size; but note
that as increases the intervals get smaller).n

m

32.81 ; 1.17

32.81 ; 1.43

31.6 6 m 6 34.0

32.8143 ; 1.1718

32.8143 ; 1.771
2.4757114

m

df = 13t0.05 = 1.771Example
6.3.2

yq ; t0.05
s1n

t0.025t0.05m

31.4cm2 6 m 6 34.2cm2

(31.4,34.2)

32.81 - 1.43 = 31.38 and 32.81 + 1.43 = 34.24

32.81 ; 1.43

32.8143 ; 1.4293

32.8143 ; 2.160(0.6617)

32.8143 ; 2.160
2.4757114

m
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Remark The quantity is referred to as “degrees of freedom” because the
deviations must sum to zero, and so only of them are “free” to vary.
A sample of size provides only independent pieces of information about
variability, that is, about . This is particularly clear if we consider the case ;
a sample of size 1 provides some information about , but no information about ,
and so no information about sampling error. It makes sense, then, that when ,
we cannot use Student’s method to calculate a confidence interval: the sample
standard deviation does not exist (see Example 2.6.5) and there is no critical value
with . A sample of size 1 is sometimes called an “anecdote”; for instance, an
individual medical case history is an anecdote. Of course, a case history can con-
tribute greatly to medical knowledge, but it does not (in itself) provide a basis for
judging how closely the individual case resembles the population at large.

Confidence Intervals and Randomness

In what sense can we be “confident” in a confidence interval? To answer this
question, let us assume that we are dealing with a random sample from a normal
population. Consider, for instance, a 95% confidence interval. One way to interpret
the confidence level (95%) is to refer to the meta-study of repeated samples from
the same population. If a 95% confidence interval for is constructed for each
sample, then 95% of the confidence intervals will contain . Of course, the observed
data in an experiment comprise only one of the possible samples; we can hope
“confidently” that this sample is one of the lucky 95%, but we will never know.

The following example provides a more concrete visualization of the meta-
study interpretation of a confidence level.

Eggshell Thickness In a certain large population of chicken eggs (described in
Example 4.1.3), the distribution of eggshell thickness is normal with mean 
and standard deviation . Figure 6.3.5 shows some typical samples from
this population; plotted on the right are the associated 95% confidence intervals.
The sample sizes are and . Notice that the second confidence interval
with does not contain . In the totality of potential confidence intervals, the
percentage that would contain is 95% for either sample size; as Figure 6.3.5 shows,
the larger samples tend to produce narrower confidence intervals. �

A confidence level can be interpreted as a probability, but caution is required. If
we consider 95% confidence intervals, for instance, then the following statement is
correct:

However, one should realize that it is the confidence interval that is the random item
in this statement, and it is not correct to replace this item with its value from the
data.Thus, for instance, we found in Example 6.3.1 that the 95% confidence interval
for the mean butterfly wings is

(6.3.3)

Nevertheless, it is not correct to say that

because this statement has no chance element; either is between 20.6 and 22.1
or it is not. If , then 

. The following analogy may help to clarify this point.34.2cm2} = 1(not  0.95)
 Pr{31.4 cm2 6 m 6 34.2cm2} =  Pr{31.4 cm2 6 32 6m = 32

m

 Pr{31.4 cm2 6 m 6 34.2cm2} = 0.95

31.4cm2 6 m 6 34.2cm2

 Pr{the next sample will give us a confidence interval that contains m} = 0.95

m

mn = 5
n = 20n = 5

s = 0.03mm
m = 0.38mm

Example
6.3.3

m

m

df = 0

t
n = 1
sm

n = 1s

(n - 1)n
(n - 1)(yi - yq)

(n - 1)
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Suppose we let represent the number of spots showing when a balanced die is
tossed; then

 Pr{Y = 2} =
1
6

Y

= 0.387
s = 0.032

= 0.350
s = 0.021

= 0.377
s = 0.034

= 0.399
s = 0.024

etc.

0.34 0.36 0.38 0.40 0.42

mm

95% of the
confidence
intervals will 
contain
m = 0.38

m = 0.38
s = 0.03

Population

(a) n = 5

= 0.374
s = 0.033

= 0.371
s = 0.029

= 0.385
s = 0.025

= 0.377
s = 0.031

etc.

0.34 0.36 0.38 0.40 0.42

mm

95% of the
confidence
intervals will 
contain
m = 0.38

m = 0.38
s = 0.03

Population

(b) n = 20

y

y

y

y

y

y

y

y

Figure 6.3.5 Confidence intervals for mean eggshell thickness
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*Even if the die rolls under a chair and we can’t immediately see that the top face of the die has 5 spots, it would
be wrong (given our definition of probability) to say “The probability that the top of the die is showing 2 spots
is 1/6.”

On the other hand, if we now toss the die and observe 5 spots, it is obviously not cor-
rect to substitute this “datum” in the probability statement to conclude that

*

As the preceding discussion indicates, the confidence level (for instance, 95%) is a
property of the method rather than of a particular interval. An individual
statement—such as (6.3.3)—is either true or false, but in the long run, if the
researcher constructs 95% confidence intervals in various experiments, each time
producing a statement such as (6.3.3), then 95% of the statements will be true.

Interpretation of a Confidence Interval

Bone Mineral Density Low bone mineral density often leads to hip fractures in the
elderly. In an experiment to assess the effectiveness of hormone replacement thera-
py, researchers gave conjugated equine estrogen (CEE) to a sample of 94 women
between the ages of 45 and 64.10 After taking the medication for 36 months, the
bone mineral density was measured for each of the 94 women. The average density
was 0.878 g/cm2, with a standard deviation of 0.126 g/cm2.

The standard error of the mean is thus . It is not clear that the 

distribution of bone mineral density is a normal distribution, but as we will see in
Section 6.5, when the sample size is large, the condition of normality is not crucial.
There were 94 observations, so there are 93 degrees of freedom. To find the multi-
plier for a 95% confidence interval, we will use 100 degrees of freedom (since Table 4
doesn’t list 93 degrees of freedom); the multiplier is . A 95% confi-
dence interval for is

or, approximately,

or
†

Thus, we are 95% confident that the mean hip bone mineral density of all women age
45 to 64 who take CEE for 36 months is between 0.852 g/cm2 and 0.904 g/cm2. �

Seeds per Fruit The number of seeds per fruit for the freshwater plant Vallisneria
Americana varies considerably from one fruit to another. A researcher took a ran-
dom sample of 12 fruit and found that the average number of seeds was 320, with a
standard deviation of 125.11 The researcher expected the number of seeds to follow,
at least approximately, a normal distribution. A normal probability plot of the data
is shown in Figure 6.3.6. This supports the use of a normal distribution model for
these data.

Example
6.3.5

(0.852, 0.904)

0.878 ; 0.026

0.878 ; 1.984(0.013)

m

t0.025 = 1.984t

t

0.126194
= 0.013

Example
6.3.4

 Pr {5 = 2} =
1
6

†If we use a computer to calculate the confidence interval, we get (0.8522, 0.9038); there is very little difference
between the multipliers for 100 versus 93 degrees of freedom.t
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The standard error of the mean is . There are 11 degrees of freedom.

The multiplier for a 90% confidence interval is . A 90% confidence
interval for is

or, approximately,

or

Thus, we are 90% confident that the (population) mean number of seeds per fruit for
Vallisneria Americana is between 255 and 385. �

Relationship to Sampling Distribution of 

At this point it may be helpful to look back and see how a confidence interval for 
is related to the sampling distribution of . Recall from Section 5.3 that the mean of

the sampling distribution is and its standard deviation is . Figure 6.3.7 shows a

particular sample mean ( ) and its associated 95% confidence interval for , super-
imposed on the sampling distribution of . Notice that the particular confidence
interval does contain ; this will happen for 95% of samples.m

Y
myq

s1nm

Y
m

Y

(255, 385)

320 ; 65

320 ; 1.796(36)

m
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One-Sided Confidence Intervals

Most confidence intervals are of the form “ ”; these are
known as two-sided intervals. However, it is possible to construct a one-sided confi-
dence interval, which is appropriate when only a lower bound, or only an upper
bound, is of interest. The following two examples illustrate 90% and 95% one-sided
confidence intervals.

Seeds per Fruit—One-Sided, 90% Consider the seed data from Example 6.3.5, which
are used to estimate the number of seeds per fruit for Vallisneria Americana.
It might be that we want a lower bound on , the population mean, but we are not
concerned with how large might be. Whereas a two-sided 90% confidence inter-
val is based on capturing the middle 90% of a distribution and thus uses the 
multipliers of , a one-sided 90% (lower) confidence interval uses the fact
that . Thus, the lower limit of the confidence interval is

and the upper limit of the interval is infinity. In this case, with 11 de-
grees of freedom the multiplier is and we get

as the lower limit. The resulting interval is (271, ). Thus, we are 90% confident
that the (population) mean number of seeds per fruit for Vallisneria Americana is at
least 271. �

Seeds per Fruit—One-Sided, 95% A one-sided 95% confidence interval is constructed in
the same manner as a one-sided 90% confidence interval, but with a different multi-
plier. For the Vallisneria Americana seeds data we have and we get

as the lower limit. The resulting interval is (255, ). Thus, we are 95% confident
that the (population) mean number of seeds per fruit for Vallisneria Americana is at
least 255. �

q
320 - 1.796(36) = 320 - 65 = 255

t11,0.05 = 1.796
t

Example
6.3.7

q
320 - 1.363(36) = 320 - 49 = 271

t11,0.10 = 1.363t
yq - t0.10SEY

 Pr(- t0.10 6 t 6 q) = 0.90
; t0.05

tt
m

m

Example
6.3.6

estimate ; margin of error

Exercises 6.3.1–6.3.20

6.3.1 (Sampling exercise) Refer to Exercise 5.3.1. Use
your sample of five ellipse lengths to construct an 80%
confidence interval for , using the formula

.

6.3.2 (Sampling exercise) Refer to Exercise 5.3.3. Use
your sample of 20 ellipse lengths to construct an 80%
confidence interval for using the formula

.

6.3.3 As part of a study of the development of the thy-
mus gland, researchers weighed the glands of five chick
embryos after 14 days of incubation. The thymus weights
(mg) were as follows:12

yq ; (1.328)s/1n m

yq ; (1.533)s/1n m

6.3.4 Consider the data from Exercise 6.3.3.

(a) Construct a 95% confidence interval for the popula-
tion mean.

(b) Interpret the confidence interval you found in part (a).
That is, explain what the numbers in the interval
mean. (See Examples 6.3.4 and 6.3.5.)

6.3.5 Six healthy three-year-old female Suffolk sheep
were injected with the antibiotic Gentamicin, at a dosage
of 10 mg/kg body weight. Their blood serum concentra-
tions ( g/ml) of Gentamicin 1.5 hours after injection
were as follows:13

�

29.6 21.5 28.0 34.6 44.9
For these data, the mean is 31.7 and the standard devia-
tion is 8.7.

(a) Calculate the standard error of the mean.

(b) Construct a 90% confidence interval for the popula-
tion mean.

33 26 34 31 23 25

For these data, the mean is 28.7 and the standard devia-
tion is 4.6.

(a) Construct a 95% confidence interval for the popula-
tion mean.

(b) Define in words the population mean that you esti-
mated in part (a). (See Example 6.1.1.)
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(c) The interval constructed in part (a) nearly contains
all of the observations; will this typically be true for a
95% confidence interval? Explain.

6.3.6 A zoologist measured tail length in 86 individuals,
all in the one-year age group, of the deermouse
Peromyscus. The mean length was 60.43 mm and the
standard deviation was 3.06 mm. A 95% confidence
interval for the mean is (59.77, 61.09).

(a) True or false (and say why): We are 95% confident
that the average tail length of the 86 individuals in
the sample is between 59.77 mm and 61.09 mm.

(b) True or false (and say why): We are 95% confident
that the average tail length of all the individuals in
the population is between 59.77 mm and 61.09 mm.

6.3.7 Refer to Exercise 6.3.6.

(a) Without doing any computations, would an 80% con-
fidence interval for the data in Exercise 6.3.6 be
wider, narrower, or about the same? Explain.

(b) Without doing any computations, if 500 mice were
sampled rather than 86, would the 95% confidence
interval listed in Exercise 6.3.6 be wider, narrower, or
about the same? Explain.

6.3.8 Researchers measured the bone mineral density of
the spines of 94 women who had taken the drug CEE.
(See Example 6.3.4, which dealt with hip bone mineral
density.) The mean was 1.016 g/cm2 and the standard
deviation was 0.155 g/cm2. A 95% confidence interval for
the mean is (0.984, 1.048).

(a) True or false (and say why): 95% of the sampled
bone mineral density measurements are between
0.984 and 1.048.

(b) True or false (and say why): 95% of the population
bone mineral density measurements are between
0.984 and 1.048.

6.3.9 There was a control group in the study described in
Example 6.3.4. The 124 women in the control group were
given a placebo, rather than an active medication. At the
end of the study they had an average bone mineral den-
sity of 0.840 g/cm2. Shown are three confidence intervals:
One is a 90% confidence interval, one is an 85% confi-
dence interval, and the other is an 80% confidence inter-
val. Without doing any calculations, match the intervals
with the confidence levels and explain how you deter-
mined which interval goes with which level.

Confidence levels:

90% 85% 80%

Intervals (in scrambled order):

(0.826, 0.854) (0.824, 0.856) (0.822, 0.858)

6.3.10 Human beta-endorphin (HBE) is a hormone
secreted by the pituitary gland under conditions of stress.
A researcher conducted a study to investigate whether a

(b) Interpret the confidence interval from part (a). That
is, explain what the interval tells you about HBE lev-
els. (See Examples 6.3.4 and 6.3.5.)

(c) Using your interval to support your answer, is there
evidence that HBE levels are lower in May than Jan-
uary? (Hint: Does your interval include the value
zero?)

6.3.11 Consider the data from Exercise 6.3.10. If the
sample size is small, as it is in this case, then in order for a
confidence interval based on Student’s distribution to
be valid, the data must come from a normally distributed
population. Is it reasonable to think that difference in
HBE level is normally distributed? How do you know?

6.3.12 Invertase is an enzyme that may aid in spore ger-
mination of the fungus Colletotrichum graminicola. A
botanist incubated specimens of the fungal tissue in petri
dishes and then assayed the tissue for invertase activity.
The specific activity values for nine petri dishes incubat-
ed at 90% relative humidity for 24 hours are summarized
as follows:15

t

Mean = 5,111units SD = 818  units

PARTICIPANT

HBE LEVEL (pg/ml)

JANUARY MAY DIFFERENCE

1 42 22 20

2 47 29 18

3 37 9 28

4 9 9 0

5 33 26 7

6 70 36 34

7 54 38 16

8 27 32 -5
9 41 33 8

10 18 14 4

Mean 37.8 24.8 13.0

SD 17.6 10.9 12.4

(a) Assume that the data are a random sample from a
normal population. Construct a 95% confidence
interval for the mean invertase activity under these
experimental conditions.

program of regular exercise might affect the resting
(unstressed) concentration of HBE in the blood. He
measured blood HBE levels, in January and again in May,
from 10 participants in a physical fitness program.The re-
sults were as shown in the table.14

(a) Construct a 95% confidence interval for the popula-
tion mean difference in HBE levels between January
and May. (Hint: You need to use only the values in
the right-hand column.)
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(b) Interpret the confidence interval you found in part
(a). That is, explain what the numbers in the interval
mean. (See Examples 6.3.4 and 6.3.5.)

(c) If you had the raw data, how could you check the con-
dition that the data are from a normal population?

6.3.13 As part of a study of the treatment of anemia in
cattle, researchers measured the concentration of seleni-
um in the blood of 36 cows who had been given a dietary
supplement of selenium (2 mg/day) for one year. The
cows were all the same breed (Santa Gertrudis) and had
borne their first calf during the year. The mean selenium
concentration was 6.21 g/dl and the standard deviation
was 1.84 g/dl.16 Construct a 95% confidence interval for
the population mean.

6.3.14 In a study of larval development in the tufted
apple budmoth (Platynota idaeusalis), an entomologist
measured the head widths of 50 larvae. All 50 larvae had
been reared under identical conditions and had moulted
six times. The mean head width was 1.20 mm and the
standard deviation was 0.14 mm. Construct a 90% confi-
dence interval for the population mean.17

6.3.15 In a study of the effect of aluminum intake on the
mental development of infants, a group of 92 infants who
had been born prematurely were given a special alu-
minum-depleted intravenous-feeding solution.18 At age
18 months the neurologic development of the infants was
measured using the Bayley Mental Development Index.
(The Bayley Mental Development Index is similar to an
IQ score, with 100 being the average in the general popu-
lation.) A 95% confidence interval for the mean is (93.8,
102.1).
(a) Interpret this interval. That is, what does the inter-

val tell us about neurologic development in the

�

�

population of prematurely born infants who receive
intravenous-feeding solutions?

(b) Does this interval indicate that the mean IQ of the
sampled population is below the general population
average of 100?

6.3.16 A group of 101 patients with end-stage renal
disease were given the drug epoetin.19 The mean hemo-
globin level of the patients was 10.3 (g/dl), with an SD of
0.9. Construct a 95% confidence interval for the popula-
tion mean.

6.3.17 In Table 4 we find that when .
Show how this value can be verified using Table 3.

6.3.18 Use Table 3 to find the value of when
. (Do not attempt to interpolate in Table 4.)

6.3.19 Data are often summarized in this format:
. Suppose this interval is interpreted as a confi-

dence interval. If the sample size is large, what would be
the confidence level of such an interval? That is, what is
the chance that an interval computed as

will actually contain the population mean? [Hint: Recall
that the confidence level of the interval is
95%.]

6.3.20 (Continuation of Exercise 6.3.19)
(a) If the sample size is small but the population distri-

bution is normal, is the confidence level of the inter-
val larger or smaller than the answer to
Exercise 6.3.19? Explain.

(b) How is the answer to Exercise 6.3.19 affected if the
population distribution of is not approximately
normal?

Y

yq ; SE

yq ; (1.96)SE

yq ; (1.00)SE

yq ; SE

df = q
t0.0025

df = qt0.025 = 1.960

6.4 Planning a Study to Estimate 
Before collecting data for a research study, it is wise to consider in advance
whether the estimates generated from the data will be sufficiently precise. It can
be painful indeed to discover after a long and expensive study that the standard
errors are so large that the primary questions addressed by the study cannot be
answered.

The precision with which a population mean can be estimated is determined by
two factors: (1) the population variability of the observed variable , and (2) the
sample size.

In some situations the variability of cannot, and perhaps should not, be
reduced. For example, a wildlife ecologist may wish to conduct a field study of a
natural population of fish; the heterogeneity of the population is not controllable
and in fact is a proper subject of investigation. As another example, in a medical
investigation, in addition to knowing the average response to a treatment, it may
also be important to know how much the response varies from one patient to an-
other, and so it may not be appropriate to use an overly homogeneous group of
patients.

Y

Y

m
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On the other hand, it is often appropriate, especially in comparative studies, to
reduce the variability of by holding extraneous conditions as constant as possible.
For example, physiological measurements may be taken at a fixed time of day; tissue
may be held at a controlled temperature; all animals used in an experiment may be
the same age.

Suppose, then, that plans have been made to reduce the variability of as much
as possible, or desirable. What sample size will be sufficient to achieve a desired
degree of precision in estimation of the population mean? If we use the standard
error as our measure of precision, then this question can be approached in a
straightforward manner. Recall that the SE is defined as

In order to decide on a value of , one must (1) specify what value of the SE is
considered desirable to achieve and (2) have available a preliminary guess of
the SD, either from a pilot study or other previous experience, or from the scien-
tific literature. The required sample size is then determined from the following
equation:

The following example illustrates the use of this equation.

Butterfly Wings The butterfly wing data of Example 6.1.1 yielded the following sum-
mary statistics:

Suppose the researcher is now planning a new study of butterflies and has decided
that it would be desirable that the SE be no more than 0.4 cm2. As a preliminary
guess of the SD, she will use the value from the old study, namely 2.48 cm2. Thus, the
desired must satisfy the following relation:

This equation is easily solved to give . Since one cannot have 38.4 butter-
flies, the new study should include at least 39 butterflies. �

You may wonder how a researcher would arrive at a value such as 0.4 cm2 for the
desired SE. Such a value is determined by considering how much error one is willing
to tolerate in the estimate of . For example, suppose the researcher in Example
6.4.1 has decided that she would like to be able to estimate the population mean, ,
to within with 95% confidence. That is, she would like her 95% confidence
interval for to be . The “ ” of the confidence interval, which is some-
times called the margin of error for 95% confidence, is .The precise value
of depends on the degrees of freedom, but typically is approximately 2.
Thus, the researcher wants to be no more than 0.8. This means that the SE
should be no more than 0.4 cm2.

In comparative studies, the primary consideration is usually the size of antici-
pated treatment effects. For instance, if one is planning to compare two experimental

2 * SE
t0.025t0.025

t0.025 * SE
; partyq ; 0.8m

;0.8
m

m

n Ú 38.4

SE =
2.481n … 0.4

n

 SE = 0.66cm2

s = 2.48cm2

yq = 32.81cm2

Example
6.4.1

Desired SE =
Guessed SD1n

n

 SEY =
s1n

Y

Y
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Exercises 6.4.1–6.4.5

6.4.1 An experiment is being planned to compare the
effects of several diets on the weight gain of beef cattle,

that the standard deviation of stem length is around
1.2 cm.22 Using this as a guess of , determine how many
soybean plants the researcher should have if she wants
the standard error of the group mean to be no more than
0.2 cm.

6.4.4 Suppose you are planning an experiment to test the
effects of various diets on the weight gain of young
turkeys.The observed variable will be gain in
three weeks (measured over a period starting one week
after hatching and ending three weeks later). Previous
experiments suggest that the standard deviation of 
under a standard diet is approximately 80 g.23 Using this
as a guess of , determine how many turkeys you should
have in a treatment group, if you want the standard error
of the group mean to be no more than
(a) 20 g

(b) 15 g

6.4.5 A researcher is planning to compare the effects of
two different types of lights on the growth of bean plants.
She expects that the means of the two groups will differ
by about 1 inch and that in each group the standard devi-
ation of plant growth will be around 1.5 inches. Consider
the guideline that the anticipated SE for each experimen-
tal group should be no more than one-fourth of the antic-
ipated difference between the two group means. How
large should the sample be (for each group) in order to
meet this guideline?

s

Y

Y = weight

s

*This is a rough guideline for obtaining adequate sensitivity to discriminate between treatments. Such sensi-
tivity, technically called power, is discussed in Chapter 7.

groups or distinct populations, the anticipated SE for each population or experi-
mental group should be substantially smaller than (preferably less than one-fourth
of) the anticipated difference between the two group means. * Thus, the butterfly re-
searcher of Example 6.4.1 might arrive at the value 0.4 cm2 if she were planning to
compare male and female Monarch butterflies and she expected the wing areas for
the sexes to differ (on the average) by about 1.6 cm2. She would then plan to capture
39 male and 39 female butterflies.

To see how the required depends on the specified precision, suppose the but-
terfly researcher specified the desired SE to be 0.2 cm2 rather than 0.4 cm2.Then the
relation would be

which yields , so that she would plan to capture 154 butterflies of each
sex. Thus, to double the precision (by cutting the SE in half) requires not twice as
many but four times as many observations. This phenomenon of “diminishing
returns” is due to the square root in the SE formula.

n = 153.76

SE =
2.481n … 0.2

n

measured over a 140-day test period.20 In order to have
enough precision to compare the diets, it is desired that
the standard error of the mean for each diet should not
exceed 5 kg.
(a) If the population standard deviation of weight gain is

guessed to be about 20 kg on any of the diets, how
many cattle should be put on each diet in order to
achieve a sufficiently small standard error?

(b) If the guess of the standard deviation is doubled, to
40 kg, does the required number of cattle double?
Explain.

6.4.2 A medical researcher proposes to estimate the
mean serum cholesterol level of a certain population of
middle-aged men, based on a random sample of the pop-
ulation. He asks a statistician for advice. The ensuing dis-
cussion reveals that the researcher wants to estimate the
population mean to within or less, with 95%
confidence. Thus, the standard error of the mean should
be 3 mg/dl or less. Also, the researcher believes that the
standard deviation of serum cholesterol in the population
is probably about 40 mg/dl.21 How large a sample does
the researcher need to take?

6.4.3 A plant physiologist is planning to measure the
stem lengths of soybean plants after two weeks of growth
when using a new fertilizer. Previous experiments suggest

; 6mg/dl
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6.5 Conditions for Validity of Estimation Methods
For any sample of quantitative data, one can use the methods of this chapter to com-
pute the mean, its standard error, and various confidence intervals; indeed, comput-
ers can make this rather easy to carry out. However, the interpretations that we have
given for these descriptions of the data are valid only under certain conditions.

Conditions for Validity of the SE Formula

First, the very notion of regarding the sample mean as an estimate of a population
mean requires that the data be viewed “as if” they had been generated by random
sampling from some population.To the extent that this is not possible, any inference
beyond the actual data is questionable. The following example illustrates the
difficulty.

Marijuana and Intelligence Ten people who used marijuana heavily were found to be
quite intelligent; their mean IQ was 128.4, whereas the mean IQ for the general pop-
ulation is known to be 100. The 10 people belonged to a religious group that uses
marijuana for ritual purposes. Since their decision to join the group might very well
be related to their intelligence, it is not clear that the 10 can be regarded (with
respect to IQ) as a random sample from any particular population, and therefore
there is no apparent basis for thinking of the sample mean (128.4) as an estimate of
the mean IQ of a particular population (such as, for instance, all heavy marijuana
users). An inference about the effect of marijuana on IQ would be even more
implausible, especially because data were not available on the IQs of the 10 people
before they began marijuana use.24

�

Second, the use of the standard error formula requires two further
conditions:

1. The population size must be large compared to the sample size. This require-
ment is rarely a problem in the life sciences; the sample can be as much as 5%
of the population without seriously invalidating the SE formula.*

2. The observations must be independent of each other. This requirement means
that the observations actually give independent pieces of information
about the population.

Data often fail to meet the independence requirement if the experiment or sam-
pling regime has a hierarchical structure, in which observational units are “nested”
within sampling units, as illustrated by the following example.

Canine Anatomy The coccygeus muscle is a bilateral muscle in the pelvic region of
the dog. As part of an anatomical study, the left side and the right side of the
coccygeus muscle were weighed for each of 21 female dogs. There were thus

Example
6.5.2

nn

SE = s/1n

Example
6.5.1

*If the sample size, , is a substantial fraction of the population size, , then the “finite population correction 

factor” should be applied. This factor is . The standard error of the mean then becomes 

.
s1n * CN - n

N - 1

CN - n
N - 1

Nn
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observations, but only 21 units chosen from the population of interest
(female dogs). Because of the symmetry of the coccygeus, the information contained
in the right and left sides is largely redundant, so that the data contain not 42, but
only 21, independent pieces of information about the coccygeus muscle of female
dogs. It would therefore be incorrect to apply the SE formula as if the data com-
prised a sample of size . The hierarchical nature of the data set is indicated in
Figure 6.5.1.25

�

n = 42

2 * 21 = 42

Dog:

Muscle:

1

L R

2

L R

3

L R

21

L R

•    •    •

•    •    •

Figure 6.5.1 Hierarchical
data structure of 
Example 6.5.2

Hierarchical data structures are rather common in the life sciences. For in-
stance, observations may be made on 90 nerve cells that come from only three dif-
ferent cats; on 80 kernels of corn that come from only four ears; on 60 young mice
who come from only 10 litters. A particularly clear example of nonindependent
observations is replicated measurements on the same individual; for instance, if a
physician makes triplicate blood pressure measurements on each of 10 patients, she
clearly does not have 30 independent observations. In some situations a correct
treatment of hierarchical data is obvious; for instance, the triplicate blood pressure
measurements could be averaged to give a single value for each patient. In other sit-
uations, however, lack of independence can be more subtle. For instance, suppose 60
young mice from 10 litters are included in an experiment to compare two diets.Then
the choice of a correct analysis depends on the design of the experiment—on such
aspects as whether the diets are fed to the young mice themselves or to the mothers,
and how the animals are allocated to the two diets.

Sometimes variation arises at several different hierarchical levels in an experi-
ment, and it can be a challenge to sort these out, and particularly, to correctly iden-
tify the quantity n. Example 6.5.3 illustrates this issue.

Germination of Spores In a study of the fungus that causes the anthracnose disease of
corn, interest focused on the survival of the fungal spores.26 Batches of spores, all
prepared from a single culture of the fungus, were stored in chambers under various
environmental conditions and then assayed for their ability to germinate, as follows.
Each batch of spores was suspended in water and then plated on agar in a petri dish.
Ten “plugs” of 3-mm diameter were cut from each petri dish and were incubated at
25 °C for 12 hours. Each plug was then examined with a microscope for germinated
and ungerminated spores. The environmental conditions of storage (the “treat-
ments”) included the following:

: Storage at 70% relative humidity for one week
: Storage at 60% relative humidity for one week
: Storage at 60% relative humidity for two weeks

and so on.

All together there were 43 treatments.
The design of the experiment is indicated schematically in Figure 6.5.2. There

were 129 batches of spores, which were randomly allocated to the 43 treatments,
three batches to each treatment. Each batch of spores resulted in one petri dish, and
each petri dish resulted in 10 plugs.

T3

T2

T1

Example
6.5.3
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One spore
culture

129 batches
of spores 1 2 3 129

Randomization

T1 T2 T43

43
treatments

129 dishes
1,290 plugs

Dish Plug

•    •    •

•    •    •

Figure 6.5.2 Design of
spore germination
experiment

To get a feeling for the issues raised by this design, let us look at some of the raw
data. Table 6.5.1 shows the percentage of the spores that had germinated for each
plug asssayed for treatment 1.

Table 6.5.1 shows that there is considerable variability both within each petri
dish and between the dishes. The variability within the dishes reflects local variation
in the percent germination, perhaps due largely to differences among the spores
themselves (some of the spores were more mature than others). The variability

Table 6.5.1 Percentage germination under treatment 1

Dish I Dish II Dish III

49 66 49

58 84 60

48 83 54

69 69 72

45 72 57

43 85 70

60 59 65

44 60 68

44 75 66

68 68 60

Mean 52.8 72.1 62.1

SD 10.1 9.5 7.4
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between dishes is even larger, because it includes not only local variation, but also
larger-scale variation such as the variability among the original batches of spores,
and temperature and relative humidity variations within the storage chambers.

Now consider the problem of comparing treatment 1 to the other treatments.
Would it be legitimate to take the point of view that we have 30 observations for each
treatment? To focus this question, let us consider the matter of calculating the stan-
dard error for the mean of treatment 1. The mean and SD of all 30 observations are

Is it legitimate to calculate the SE of the mean as

As you may suspect, this is not legitimate. There is a hierarchical structure in the
data, and so we cannot apply the SE formula so naively.An acceptable way to calcu-
late the SE is to consider the mean for each dish as an observation; thus, we obtain
the following:*

Observations: 52.8, 72.1, 62.1

Notice that the incorrect analysis gave the same mean (62.33) as this analysis, but an
inappropriately small SE (2.2 rather than 5.6). If we were comparing several treat-
ments, the same pattern would tend to hold; the incorrect analysis would tend to
produce SEs that were (individually and pooled) too small, which might cause us to
“overinterpret” the data, in the sense of suggesting there is significant evidence of
treatment differences where none exists.

We should emphasize that, even though the correct analysis requires combining
the measurements on the 10 plugs in a dish into a single observation for that dish,
the experimenter was not wasting effort by measuring 10 plugs per dish instead of,
say, only one plug per dish. The mean of 10 plugs is a much better estimate of the
average for the entire dish than is a measurement on one plug; the improved preci-
sion for measuring 10 plugs is reflected in a smaller between-dish SD. For instance,
for treatment 1 the SD was 9.65; if fewer plugs per dish had been measured, this SD
would probably have been larger. �

The pitfall illustrated by Example 6.5.3 has trapped many an unwary researcher.
When hierarchical structures result from repeated measurements on the same indi-
vidual organism (as in Example 6.5.2), they are relatively easy to recognize. But the
hierarchical structure in Example 6.5.3 has a different origin; it is due to the fact that
the unit of observation is an individual plug, but individual plugs are not randomly
allocated to the treatment groups. Rather, the unit that is randomly allocated to
treatment is a batch of spores, which later is plated in a petri dish, which then gives

SEY =
s1n =

9.6513
= 5.6

SD = 9.65

Mean = 62.33

n = 3

SEY =
s1n =

11.88130
= 2.2

 SD = 11.88

 Mean = 62.33

*An alternative way to aggregate the data from the 10 plugs in a dish would be to combine the raw counts of
germinated and ungerminated spores for the whole dish and express these as an overall percent germination.
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rise to 10 plugs. In the language of experimental design, plugs are nested within petri
dishes. Whenever observational units are nested within the units that are randomly
allocated to treatments, a hierarchical structure may potentially exist in the data. Note
that the difficulty is only “potential”; in some cases a nonhierarchical analysis may
be acceptable. For instance, if experience had shown that the differences between
petri dishes were negligible, then we might ignore the hierarchical structure in ana-
lyzing the data. The decision can be a difficult one and may require expert statistical
advice.

The issue of hierarchical data structures has important implications for the
design of an experiment as well as its analysis.The sample size ( ) must be appropri-
ately identified in order to determine whether the experiment includes enough
replication. As a simple example, suppose it is proposed to do a spore germination
experiment such as that of Example 6.5.3, but with only one dish per treatment,
rather than three. To see the flaw in this proposal, suppose that the proposed exper-
iment is to include three treatments, with one dish per treatment. With this design,
would we then be able to distinguish treatment differences from inherent differ-
ences between the dishes? No. The intertreatment differences and the interdish
differences would be mutually entangled, or confounded. You can easily visualize
this situation if you look at the data in Table 6.5.1 and pretend that those data came
from the proposed experiment; that is, pretend that dishes I, II, and III had received
different treatments, and that we had no other data. It would be difficult to extract
meaningful information about intertreatment differences unless we knew for certain
that interdish variation was negligible.

We saw in Section 6.4 how to use a preliminary estimate of the SD to determine
the sample size ( ) required to attain a desired degree of precision, as expressed by
the SE.These ideas carry over to experiments involving hierarchical data structures.
For example, suppose a botanist is planning a spore germination experiment such as
that of Example 6.5.3. If she has already decided to use 10 plugs per dish, the
remaining problem would be to decide on the number of dishes per treatment. This
question could be approached as in Section 6.4, considering the dish as the experi-
mental unit, and using a preliminary estimate of the SD between dishes (which was
9.65 in Example 6.5.3). If, however, she wants to choose optimal values for both the
number of plugs per dish and the number of dishes per treatment, she may wish to
consult a statistician.

Conditions for Validity of a Confidence Interval for 

A confidence interval for provides a definite quantitative interpretation for 
Note that the data must be a random sample from the population of interest. If
there is bias in the sampling process, then the sampling distribution concepts on
which the confidence interval method is based do not hold: Knowing the mean of a
biased sample does not provide information about the population mean . The
validity of Student’s method for constructing confidence intervals also depends on
the form of the population distribution of the observed variable Y. If follows a
normal distribution in the population, then Student’s method is exactly valid—that
is to say, the probability that the confidence interval will contain is actually equal
to the confidence level (for example, 95%). By the same token, this interpretation is
approximately valid if the population distribution is approximately normal. Even if
the population distribution is not normal, the Student’s confidence interval is
approximately valid if the sample size is large. This fact can often be used to justify
the use of the confidence interval even in situations where the population distribu-
tion cannot be assumed to be approximately normal.
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From a practical point of view, the important question is: How large must the
sample be in order for the confidence interval to be approximately valid? Not
surprisingly, the answer to this question depends on the degree of nonnormality
of the population distribution: If the population is only moderately nonnormal,
then need not be very large. Table 6.5.2 shows the actual probability that a
Student’s confidence interval will contain for samples from three different
populations.27 The forms of the population distributions are shown in Figure 6.5.3.

mt
n

Population 1 is a normal population, population 2 is moderately skewed, and popu-
lation 3 is an extremely skewed, “L-shaped” distribution. (Populations 2 and 3 were
discussed in optional Section 5.3.)

For population 1, Table 6.5.2 shows that the confidence interval method is
exactly valid for all sample sizes, even . For population 2, the method is
approximately valid even for fairly small samples. For population 3 the approximation

n = 2

Table 6.5.2 Actual probability that confidence intervals will contain 
the population mean

(a) 95% confidence interval

Sample size
2 4 8 16 32 64 Very large

Population 1 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Population 2 0.94 0.93 0.94 0.94 0.95 0.95 0.95

Population 3 0.87 0.53 0.57 0.80 0.88 0.92 0.95

(b) 99% confidence interval

Sample size
2 4 8 16 32 64 Very large

Population 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Population 2 0.99 0.98 0.98 0.98 0.99 0.99 0.99
Population 3 0.97 0.82 0.60 0.81 0.93 0.96 0.99

Population 1 Population 2

Population 3

Figure 6.5.3 Three
population distributions:
(1) normal, (2) slightly
skewed right, (3) heavily
skewed right
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is very poor for small samples and is only fair for samples as large as . In a
sense, population 3 is a “worst case”; it could be argued that the mean is not a mean-
ingful measure for population 3, because of its bizarre shape.

Summary of Conditions

In summary, Student’s method of constructing a confidence interval for is appro-
priate if the following conditions hold.

1. Conditions on the design of the study

(a) It must be reasonable to regard the data as a random sample from a
large population.

(b) The observations in the sample must be independent of each other.

2. Conditions on the form of the population distribution

(a) If is small, the population distribution must be approximately normal.

(b) If is large, the population distribution need not be approximately
normal.

The requirement that the data are a random sample is the most important
condition.

The required “largeness” in condition 2(b) depends (as shown in Example 6.5.3)
on the degree of nonnormality of the population. In many practical situations, mod-
erate sample sizes (say, to 30) are large enough.

Verification of Conditions

In practice, the preceding “conditions” are often “assumptions” rather than known
facts. However, it is always important to check whether the conditions are reason-
able in a given case.

To determine whether the random sampling model is applicable to a particular
study, the design of the study should be scrutinized, with particular attention to pos-
sible biases in the choice of experimental material and to possible nonindependence
of the observations due to hierarchical data structures.

As to whether the population distribution is approximately normal, information
on this point may be available from previous experience with similar data. If the
only source of information is the data at hand, then normality can be roughly
checked by making a histogram and normal probability plot of the data. Unfortu-
nately, for a small or moderate sample size, this check is fairly crude; for instance, if
you look back at Figure 5.2.7, you will see that even samples of size 25 from a nor-
mal population often do not appear particularly normal.* Of course, if the sample is
large, then the sample histogram gives us good information about the population
shape; however, if is large, the requirement of normality is less important anyway.

In any case, a crude check is better than none, and every data analysis should
begin with inspection of a graph of the data, with special attention to any observa-
tions that lie very far from the center of the distribution.

Sometimes a histogram or normal probability plot of the data indicate that the
data did not come from a normal population. If the sample size is small, then

n

n = 20

n

n

mt

n = 64

*We could aid our graphical assessment of normality by using a more objective method such as the
Shapiro–Wilk test of Section 4.4.
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Student’s method will not give valid results. However, it may be possible to trans-
form the data to achieve approximate normality and then analyze the data in the
transformed scale.

Sediment Yield Sediment yield, which is a measure of the amount of suspended sedi-
ment in water, is a measure of water quality for a river. The distribution of sediment
yield often has a skewed distribution. However, taking the logarithm of each obser-
vation can produce a distribution that follows a normal curve quite well. Figure 6.5.4
shows normal probability plots of sediment yields of water samples from the Black
River in northern Ohio for days (a) in mg/l and (b) in log scale (i.e.,
ln(mg/l)).28

n = 9

Example
6.5.3
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Figure 6.5.4 Normal
probability plots of
sediment yields of water
samples from the Black
River for nine days (a) in
mg/l and (b) after taking
the natural logarithm of
each observation*

The natural logarithms of the sediment yields have an average of 
and a standard deviation of . Thus, the standard error of the mean is 

. The multiplier for a 95% confidence interval is . A 

95% confidence interval for is

or, approximately,

or

Thus, we are 95% confident that the mean natural logarithm of sediment yield for the
Black River is between 2.20 and 4.22.† �

(2.20, 4.22)

3.21 ; 1.01

3.21 ; 2.306(0.44)

m

t8, 0.025 = 2.306t
1.3319

= 0.44

s = 1.33
yq = 3.21

*The Shapiro–Wilk test of normality (from Section 4.4) for the raw data yields a -value of 0.0039 providing
strong evidence of abnormality for the untransformed data. In contrast, for the natural-log transformed data, the
Shapiro–Wilk -value is 0.6551, showing no significant evidence for abnormality. Note that we could also have
taken the base 10 log to normalize the data.

P

P

†Note that we have constructed a confidence interval for the population average logarithm of sediment yield.
Because the logarithm transformation is not linear, the mean of the logarithms is not the logarithm of the mean,
so applying the inverse transformation to the endpoints of the confidence interval will not convert it properly
into a confidence interval for the population mean in the original scale of mg/l. However, we can get an approx-
imate confidence interval by taking exp and exp . [This is based on the fact that
the mean of a log normal distribution (which is bell shaped after taking logarithms) is exp .](m + s2/2)

(4.22 + 1.332/2)(2.2 + 1.332/2)
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38 42 25 35 35 33 48 53 17

24 26 26 47 28 24 35 38 26

38 29 49 26 41 26 35 38 44

25 45 28 31 46 32 39 59 53

30 100 60 30 130 1,060 30

Exercises 6.5.1–6.5.8

6.5.1 SGOT is an enzyme that shows elevated activity
when the heart muscle is damaged. In a study of 31 pa-
tients who underwent heart surgery, serum levels of
SGOT were measured 18 hours after surgery.29 The mean
was 49.3 U/l and the standard deviation was 68.3 U/l. If
we regard the 31 observations as a sample from a popula-
tion, what feature of the data would cause one to doubt
that the population distribution is normal?

6.5.2 A dendritic tree is a branched structure that
emanates from the body of a nerve cell. In a study of
brain development, researchers examined brain tissue
from seven adult guinea pigs. The investigators randomly
selected nerve cells from a certain region of the brain and
counted the number of dendritic branch segments
emanating from each selected cell. A total of 36 cells was
selected, and the resulting counts were as follows:30

The mean of these counts is 35.67 and the standard devi-
ation is 9.99.

Suppose we want to construct a 95% confidence interval
for the population mean. We could calculate the standard
error as

and obtain the confidence interval as

or

(a) On what grounds might the above analysis be criti-
cized? (Hint: Are the observations independent?)

(b) Using the classes [15, 20), [20, 25), and so on, con-
struct a histogram of the data. Does the shape of the
distribution support the criticism you made in part
(a)? If so, explain how.

6.5.3 In an experiment to study the regulation of insulin
secretion, blood samples were obtained from seven dogs
before and after electrical stimulation of the vagus nerve.
The following values show, for each animal, the increase
(after minus before) in the immunoreactive insulin con-
centration ( U/ml) in pancreatic venous plasma.31�

32.3 6 m 6 39.1

35.67 ; (2.042)(1.67)

SEY =
9.99136

= 1.67

For these data, Student’s method yields the following
95% confidence interval for the population mean:

Is Student’s method appropriate in this case? Why or
why not?

6.5.4 In a study of parasite–host relationships, 242 larvae
of the moth Ephestia were exposed to parasitization by
the Ichneumon fly. The following table shows the num-
ber of Ichneumon eggs found in each of the Ephestia
larva.32

t

-145 6 m 6 556

t

For these data, and . Student’s 
method yields the following 95% confidence interval

for , the population mean number of eggs per larva:

(a) Does it appear reasonable to assume that the popu-
lation distribution of is approximately normal?
Explain.

(b) In view of your answer to part (a), on what grounds
can you defend the application of Student’s method
to these data?

6.5.5 The following normal probability plot shows the
distribution of the diameters, in cm, of each of nine
American Sycamore trees.33

t

Y

2.12 6 m 6 2.61

m

t
s = 1.950yq = 2.368

NUMBER OF EGGS (Y) NUMBER OF LARVAE

0 21

1 77

2 52

3 41

4 23

5 13

6 9

7 1

8 2

9 0

10 2

11 0

12 0

13 0

14 0

15 1

Total 242
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The normal probability plot is not linear, which suggests
that a transformation of the data is needed before a
confidence interval can be constructed using Student’s 

method. The raw data aret

(a) Take the square root of each observation and con-
struct a 90% confidence interval for the mean.

(b) Interpret the confidence interval from part (a). That
is, explain what the interval tells you about the
square root of the diameters of these trees.

6.5.6 Four treatments were compared for their effect on
the growth of spinach cells in cell culture flasks. The

experimenter randomly allocated two flasks to each
treatment. After a certain time on treatment, he ran-
domly drew three aliquots (1 cc each) from each flask
and measured the cell density in each aliquot; thus, he
had six cell density measurements for each treatment. In
calculating the standard error of a treatment mean, the
experimenter calculated the standard deviation of the six
measurements and divided by . On what grounds
might an objection be raised to this method of calculating
the SE?

6.5.7 In an experiment on soybean varieties, individually
potted soybean plants were grown in a greenhouse, with
10 plants of each variety used in the experiment. From
the harvest of each plant, five seeds were chosen at ran-
dom and individually analyzed for their percentage of oil.
This gave a total of 50 measurements for each variety. To
calculate the standard error of the mean for a variety, the
experimenter calculated the standard deviation of the 50
observations and divided by . Why would this calcu-
lation be of doubtful validity?

6.5.8 In a plant mitigation project, an entire local (en-
dangered) population of 255 Congdon’s tarplants was
transplanted to a new location.34 One year after trans-
plant, 30 of the 255 plants were randomly selected and
the diameter at the root caudix junction (the top of the
root just beneath the surface of the soil) was measured. If
the population of plants under consideration consists of
only the local 255 plants, explain why it would be improp-
er to use Student’s method of constructing a confidence
interval for , the population mean root caudix junction
diameter.

m

t

150

16

6.6 Comparing Two Means
In previous sections we have considered the analysis of a single sample of quantita-
tive data. In practice, however, much scientific research involves the comparison of
two or more samples from different populations. When the observed variable is
quantitative, the comparison of two samples can include several aspects, notably (1)
comparison of means, (2) comparison of standard deviations, and (3) comparison of
shapes. In this section, and indeed throughout this book, the primary emphasis will
be on comparison of means and on other comparisons related to shift.We will begin
by discussing the confidence interval approach to comparing means, which is a
natural extension of the material in Section 6.3; in Chapter 7 we will consider an
approach known as hypothesis testing.

Notation

Figure 6.6.1 presents our notation for comparison of two samples. The notation is
exactly parallel to our earlier notation, but now a subscript (1 or 2) is used to
differentiate between the two samples. The two “populations” can be naturally
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m1 
s1

s1

Population 1 Sample of n1

m2 
s2

s2

Population 2 Sample of n2

y1
y2

Figure 6.6.1 Notation for comparison of two samples

occurring populations (as in Example 6.1.1) or they can be conceptual populations
defined by certain experimental conditions (as in Example 6.3.4). In either case,
the data in each sample are viewed as a random sample from the corresponding
population.

We begin by describing, in the next section, some simple computations that are
used for both confidence intervals and hypothesis testing.

Standard Error of 

In this section we introduce a fundamental quantity for comparing two samples: the
standard error of the difference between two sample means.

Basic Ideas

We saw in Chapter 6 that the precision of a sample mean can be expressed by its
standard error, which is equal to

To compare two sample means, it is natural to consider the difference between
them:

which is an estimate of the quantity .To characterize the sampling error of
estimation, we need to be concerned with the standard error of the difference

. We illustrate this idea with an example.

Vital Capacity Vital capacity is a measure of the amount of air that someone can
exhale after taking a deep breath. One might expect that musicians who play brass
instruments would have greater vital capacities, on average, than would other per-
sons of the same age, sex, and height. In one study the vital capacities of eight brass
players were compared to the vital capacities of seven control subjects; Table 6.6.1
shows the data.35

The difference between the sample means is

We know that both and are subject to sampling error, and consequently the dif-
ference (0.09) is subject to sampling error. The standard error of tells us
how much precision to attach to this difference between and . �Y2Y1

Y1 - Y2

yq2yq1

yq1 - yq2 = 4.83 - 4.74 = 0.09

Example
6.6.1

(Y1 - Y2)

(m1 - m2)

Y1 - Y2

SEY =
s1n

Y

(Y1 - Y2)
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Definition
The standard error of is defined as

SE(Y1-Y2) = C s1
2

n1
+
s2

2

n2

Y1 � Y2

Table 6.6.1 Vital capacity (liters)

Brass player Control

4.7 4.2
4.6 4.7

4.3 5.1

4.5 4.7

5.5 5.0

4.9

5.3

n 7 5

yq 4.83 4.74

s 0.435 0.351

The following alternative form of the formula shows how the SE of the differ-
ence is related to the individual SEs of the means:

where

Notice that this version of the formula shows that “SEs add like Pythagorus.”
When we have two independent samples, we take the SE of each mean, square
them, add them, and then take the square root of the sum. Figure 6.6.2 illustrates
this idea.

It may seem odd that in calculating the SE of a difference we add rather than
subtract within the formula . However, as was discussed
in Section 3.5, the variability of the difference depends on the variability of each
part. Whether we add to or subtract from , the “noise” associated with 
(i.e., ) adds to the overall uncertainty. The greater the variability in , the 
greater the variability in . The formula accounts
for this variability.

We illustrate the formulas in the following example.

SE(Y1-Y2) = 2SE1
2 + SE2

2Y1 - Y2

Y2SE2

Y2Y1Y2Y1Y2

SE(Y1-Y2) = 2SE1
2 + SE2

2

SE2 = SEY2
=
s21n2

SE1 = SEY1
=
s11n1

SE(Y1-Y2) = 2SE1
2 + SE2

2
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Figure 6.6.2 SE for a
difference

Vital Capacity For the vital capacity data, preliminary computations yield the results
in Table 6.6.2.

The SE of ( ) is

Note that

Notice that the SE of the difference is greater than either of the individual SEs but
less than their sum. �

0.227 = 3(0.164)2 + (0.157)2

SE(Y1-Y2) = C0.1892
7

+
0.1232

5
= 0.227 L 0.23

Y1 - Y2

Example
6.6.2

Tonsillectomy An experiment was conducted to compare conventional surgery to a
newer procedure called Coblation-assisted intracapsular tonsillectomy for children
who needed to have their tonsils removed. A key measurement taken during the
study was the pain score that each child reported, on a scale of 0–10, four days after
surgery. Table 6.6.3 gives the means and standard deviations of pain scores for the
two groups.36

Example
6.6.3

SE1

SE2

SE
(Y

1
−

Y 2
)

Table 6.6.2

Brass player Control

s2 0.1892 0.1232

n 7 5
SE 0.164 0.157

Table 6.6.3 Pain score

Type of surgery

Conventional Coblation

Mean 4.3 1.9

SD 2.8 1.8

n 49 52
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The data in Table 6.6.3 show that the standard deviation of pain scores in 49
children given conventional surgery was 2.8.Thus, the SE for the conventional mean

is . For the 52 children in the coblation group, the SD was 1.8, which

gives an SE of . The SE for the difference in the two means is

. �

The Pooled Standard Error (Optional)

The preceding standard error is known as the “unpooled” standard error. Many sta-
tistics software packages allow the user to specify use of what is known as the
“pooled” standard error, which we will discuss briefly.

Recall that the square of the standard deviation, , is the sample variance, ,
defined as

The pooled variance is a weighted average of , the variance of the first sample, and
, the variance of the second sample, with weights equal to the degrees of freedom

from each sample, :

The pooled standard error is defined as

We illustrate with an example.

Vital Capacity For the vital capacity data we found that and .
The pooled variance is

and the pooled SE is

Recall from Example 6.6.2 that the unpooled SE for the same data was 0.227. �

If the sample sizes are equal or if the sample standard deviations are
equal , then the unpooled and the pooled method will give the same answer
for . The two answers will not differ substantially unless both the sample
sizes and the sample SDs are quite discrepant.

SE(Y1-Y2)

(s1 = s2)
(n1 = n2)

SEpooled = C0.1628a 1
7

+
1
5
b = 0.236.

spooled
2 =

(7 - 1)0.1892 + (5 - 1)0.1232
(7 + 5 - 2)

= 0.1628

s2
2 = 0.1232s1

2 = 0.1892Example
6.6.4

SEpooled = Cspooled
2 a 1

n1
+

1
n2
b .

spooled
2 =

(n1 - 1)s21 + (n2 - 1)s22
(n1 - 1) + (n2 - 1)

=
(n1 - 1)s21 + (n2 - 1)s22

(n1 + n2 - 2)
.

ni - 1
s2

2
s1

2

s2 =
©(yi - yq)2

n - 1

s2s

20.402 + 0.252 = 0.4717 L 0.47

1.8152
= 0.2496

2.8149
= 0.40
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To show the analogy between the two SE formulas, we can write them as fol-
lows:

and

In the pooled method, the separate variances— and —are replaced by the single
variance , which is calculated from both samples.

Both the unpooled and the pooled SE have the same purpose—to estimate the
standard deviation of the sampling distribution of . In fact, it can be shown
that the standard deviation is

Note the resemblance between this formula and the formula for .
In analyzing data when the sample sizes are unequal , one needs to

decide whether to use the pooled or unpooled method for calculating the stan-
dard error. The choice depends on whether one is willing to assume that the pop-
ulation SDs ( and ) are equal. It can be shown that if , then the
pooled method should be used, because in this case is the best estimate of
the population SD. However, in this case the unpooled method will typically give
an SE that is quite similar to that given by the pooled method. If , then the
unpooled method should be used, because in this case is not an estimate of
either or , so that pooling would accomplish nothing. Because the two meth-
ods substantially agree when and the pooled method is not valid when

, most statisticians prefer the unpooled method. There is little to be
gained by pooling when pooling is appropriate and there is much to be lost when
pooling is not appropriate. Many software packages use the unpooled method by
default; the user must specify use of the pooled method if she or he wishes to pool
the variances.

s1 Z s2

s1 = s2

s2s1

spooled

s1 Z s2

spooled

s1 = s2s2s1

(n1 Z n2)
SE(Y1-Y2)

s(Y-Y2)
= Cs2

1

n1
+
s2

2

n2

(Y1 - Y2)

spooled
2

s2
2s1

2

SEpooled = Cs2pooled

n1
+
s2pooled

n2

SE(Y1-Y2) = Cs21n1
+
s22
n2

Exercises 6.6.1–6.6.9

6.6.1 Data from two samples gave the following results:

SAMPLE 1 SAMPLE 2

n 6 12

yq 40 50

s 4.3 5.7

6.6.2 Compute the standard error of ( ) for the
following data:

Y1 - Y2

SAMPLE 1 SAMPLE 2

n 10 10

yq 125 217

s 44.2 28.7

Compute the standard error of ( ).Y1 - Y2
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6.6.5 Data from two samples gave the following results:

6.6.6 Data from two samples gave the following results:

Compute the standard error of ( ).

6.6.7 Example 6.6.3 reports measurements of pain for
children who have had their tonsils removed. Another
variable measured in that experiment was the number of
doses of Tylenol taken by the children in the two groups.
Those data are

Y1 - Y2

6.6.8 Two varieties of lettuce were grown for 16 days in a
controlled environment. The following table shows the
total dry weight (in grams) of the leaves of nine plants of
the variety “Salad Bowl” and six plants of the variety
“Bibb.”37

Compute the standard error of ( ) for these data.

6.6.9 Some soap manufacturers sell special “antibacteri-
al” soaps. However, one might expect ordinary soap to
also kill bacteria. To investigate this, a researcher pre-
pared a solution from ordinary, nonantibiotic soap and a
control solution of sterile water. The two solutions were
placed onto petri dishes and E. coli bacteria were added.
The dishes were incubated for 24 hours and the number
of bacteria colonies on each dish were counted.38 The
data are given in the following table.

Y1 - Y2

Compute the standard error of ( ) for these data.Y1 - Y2

6.6.3 Compute the standard error of ( ) for the
following data:

Y1 - Y2

SAMPLE 1 SAMPLE 2

n 5 7

yq 44 47

s 6.5 8.4

6.6.4 Consider the data from Exercise 6.6.3. Suppose the
sample sizes were doubled, but the means and SDs stayed
the same, as follows. Compute the standard error of
( ).Y1 - Y2

SAMPLE 1 SAMPLE 2

n 10 14

yq 44 47

s 6.5 8.4

SAMPLE 1 SAMPLE 2

yq 96.2 87.3

SE 3.7 4.6

SAMPLE 1 SAMPLE 2

n 22 21

yq 1.7 2.4

SE 0.5 0.7

TYPE OF SURGERY
CONVENTIONAL COBLATION

n 49 52

yq 3.0 2.3

SD 2.4 2.0

SALAD BOWL BIBB

3.06 1.31

2.78 1.17

2.87 1.72

3.52 1.20

3.81 1.55

3.60 1.53

3.30

2.77

3.62

yq 3.259 1.413

s .400 .220

CONTROL
(GROUP 1)

SOAP
(GROUP 2)

30 76

36 27

66 16

21 30

63 26

38 46

35 6

45

n 8 7

yq 41.8 32.4

s 15.6 22.8

SE 5.5 8.6

Compute the standard error of ( ).Y1 - Y2

Compute the standard error of ( ).Y1 - Y2
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*Strictly speaking, the distribution needed to construct a confidence interval here depends on the unknown pop-
ulation standard deviations and and is not a Student’s distribution. However, Student’s distribution with
degrees of freedom given by formula (6.7.1) is a very good approximation. This is sometimes known as Welch’s
method or Satterthwaite’s method.

tts2s1

6.7 Confidence Interval for 
One way to compare two sample means is to construct a confidence interval for the
difference in the population means—that is, a confidence interval for the quantity
( ). Recall from Chapter 6 that a 95% confidence interval for the mean of
a single population that is normally distributed is constructed as

Analogously, a 95% confidence interval for ( ) is constructed as

The critical value is determined from Student’s distribution using degrees of
freedom* given as

(6.7.1)

where and .
Of course, calculating the degrees of freedom from formula (6.7.1) is compli-

cated and time consuming. Most computer software uses formula (6.7.1), as do
some graphing calculators. A simpler method to obtain the approximate degrees
of freedom is to use the smaller of ( ) and ( ). This option gives a con-
fidence interval that is somewhat conservative, in the sense that the true confi-
dence level is a bit larger than 95% when is used. A third approach is to
approximate the degrees of freedom as . This approach is somewhat
liberal, in the sense that the true confidence level is a bit smaller than 95% when

is used.
Intervals with other confidence coefficients are constructed analogously; for

example, for a 90% confidence interval one would use instead of .
The following example illustrates the construction of a confidence interval for

( ).

Fast Plants The Wisconsin Fast Plant, Brassica campestris, has a very rapid growth
cycle that makes it particularly well suited for the study of factors that affect plant
growth. In one such study, seven plants were treated with the substance Ancymidol
(ancy) and were compared to eight control plants that were given ordinary water.
Heights of all of the plants were measured, in cm, after 14 days of growth.39 The data
are given in Table 6.7.1.

Parallel dotplots and normal probability plots (Figure 6.7.1) show that both
sample distributions are reasonably symmetric and bell shaped. Moreover, we
would expect that a distribution of plant heights might well be normally distributed,
since height distributions often follow a normal curve. The dotplots show that the
ancy distribution is shifted down a bit from the control distribution; the difference in
sample means is . The SE for the difference in sample means is

SE(Y1-Y2) = C4.82

8
+

4.72

7
= 2.46

15.9 - 11.0 = 4.9

Example
6.7.1

m1 - m2

t0.025t0.05

t0.025

n1 + n2 - 2
t0.025

n2 - 1n1 - 1

SE2 = s2/1n2SE1 = s1/1n1

df =
(SE1

2 + SE2
2)2

SE1
4/(n1 - 1) + SE2

4/(n2 - 1)

tt0.025

(yq1 - yq2) ; t0.025SE(Y1-Y2)

m1 - m2

yq ; t0.025SEY

mm1 - m2

(m1 - m2)
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Using Formula (6.7.1), we find the degrees of freedom to be 12.8:

Using a computer, we can find that for a 95% confidence interval the multiplier for
12.8 degrees of freedom is . (Without a computer, we could
round down the degrees of freedom to 12, in which case the multiplier is 2.179.t

t12.8, 0.025 = 2.164
t

df =
(1.72 + 1.82)2

1.74/7 + 1.84/6
= 12.8

Table 6.7.1 Fourteen-day height of control 
and of ancy plants (cm)

Control
(Group 1)

Ancy
(Group 2)

10.0 13.2

13.2 19.5

19.8 11.0

19.3 5.8

21.2 12.8

13.9 7.1

20.3 7.7

9.6

n 8 7

yq 15.9 11.0

s 4.8 4.7

SE 1.7 1.8
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(c)

Figure 6.7.1 Parallel
dotplots (a) and normal
probability plots of heights
of fast plants receving
Control (b) and Ancy (c) 
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This change from 12.8 to 12 degrees of freedom has little effect on the final answer.)
The confidence interval formula gives

or

The 95% confidence interval for ( ) is

Rounding off, we have

Thus, we are 95% confident that the population average 14-day height of fast plants
when water is used ( ) is between 0.4 cm lower and 10.2 cm higher than the aver-
age 14-day height of fast plants when ancy is used ( ). �

Fast Plants We said that a conservative method of constructing a confidence interval
for a difference in means is to use the smaller of and . For the data
given in Example 6.7.1, this method would use 6 degrees of freedom and a multi-
plier of 2.447. In this case, the 95% confidence interval for ( ) is

or

The 95% confidence interval for ( ) is

This interval is a bit conservative in the sense that the interval is wider than the
interval found in Example 6.7.1. �

Thorax Weight Biologists have theorized that male Monarch butterflies have, on
average, a larger thorax than do females. A sample of seven male and eight female
Monarchs yielded the data in Table 6.7.2, which are displayed in Figure 6.7.2. (These
data come from another part of the study described in Example 6.1.1.)

For the data in Table 6.7.2, the SE for ( ) is

Formula (6.7.1) gives degrees of freedom

For a 95% confidence interval the multiplier is . (We could round
the degrees of freedom to 12, in which case the multiplier is 2.179. This changet

t12.3, 0.025 = 2.173t

df =
(3.22 + 2.72)2

3.24

6
+

2.74

7

= 12.3

SE(Y1-Y2) = C8.42

7
+

7.52

8
= 4.14

Y1 - Y2

Example
6.7.3

(-1.1, 10.9)

m1 - m2

4.9 ; 6.02

(15.9 - 11.0) ; (2. 447)(2.46)

m1 - m2

t
n2 - 1n1 - 1

Example
6.7.2

m2

m1

(-0.4, 10.2)

(-0.42, 10.22)

m1 - m2

4.9 ; 5.32

(15.9 - 11.0) ; (2.164)(2.46)
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Figure 6.7.2 Parallel
dotplots of thorax weights

from 12.3 to 12 degrees of freedom has only a small effect on the final answer.) The
confidence interval formula gives

or

and the 95% confidence interval for ( ) is

According to the confidence interval, we can be 95% confident that the population
mean thorax weight for male Monarch butterflies ( ) is larger than that for females
( ) by an amount that might be as small as 3.3 mg or as large as 21.3 mg.m2

m1

(3.3,  21.3)

m1 - m2

12.3 ; 9.0

(75.7 - 63.4) ; (2.173)(4.14)

Table 6.7.2 Thorax weight (mg)

Male Female

67 73

73 54

85 61

84 63

78 66

63 57

80 75

58

n 7 8

yq 75.7 63.4

s 8.4 7.5

SE 3.2 2.7
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Likewise, for a 90% confidence interval the multiplier is . The
confidence interval formula gives

or

and the 90% confidence interval for is

According to the confidence interval, we can be 90% confident that the population
mean thorax weight for male Monarch butterflies ( ) is larger than that for females
( ) by an amount that might be as small as 4.9 mg or as large as 19.7 mg. �

Conditions for Validity In Section 6.5 we stated the conditions that make a confi-
dence interval for a mean valid: We require that the data can be thought of as (1) a
random sample from (2) a normal population. Likewise, when comparing two
means, we require two independent, random samples from normal populations. If
the sample sizes are large, then the condition of normality is not crucial (due to the
Central Limit Theorem).

m2

m1

(4.9, 19.7)

(m1 - m2)

12.3 ; 7.4

(75.7 - 63.4) ; (1.779)(4.14)

t12.3, 0.05 = 1.779t

Exercises 6.7.1–6.7.14

6.7.1 In Table 6.6.3, data were presented from an experi-
ment that compared two types of surgery. The average
pain score of the 49 children given conventional tonsillec-
tomies was 4.3, with an SD of 2.8. For the 52 children in
the Coblation group the average was 1.9 with an SD of
1.8. Use these data to construct a 95% confidence inter-
val for the difference in population average pain scores.
[Note: Formula (6.7.1) yields 81.1 degrees of freedom for
these data.]

6.7.2 Ferulic acid is a compound that may play a role in
disease resistance in corn. A botanist measured the con-
centration of soluble ferulic acid in corn seedlings
grown in the dark or in a light/dark photoperiod. The re-
sults (nmol acid per gm tissue) were as shown in the
table.40

that the difference in population means is at least
__________ nmol/g.”

6.7.4 A study was conducted to determine whether
relaxation training, aided by biofeedback and meditation,
could help in reducing high blood pressure. Subjects were
randomly allocated to a biofeedback group or a control
group. The biofeedback group received training for eight
weeks. The table reports the reduction in systolic blood
pressure (mm Hg) after eight weeks.41 [Note: Formula
(6.7.1) yields 190 degrees of freedom for these data.]
(a) Construct a 95% confidence interval for the differ-

ence in mean response.
(b) Interpret the confidence interval from part (a) in the

context of this setting.

DARK PHOTOPERIOD

n 4 4

yq 92 115

s 13 13

(a) Construct a 95% confidence interval for the differ-
ence in ferulic acid concentration under the two
lighting conditions. (Assume that the two popula-
tions from which the data came are normally distrib-
uted.) [Note: Formula (6.7.1) yields 6 degrees of
freedom for these data.]

(b) Repeat part (a) for a 90% level of confidence.

6.7.3 (Continuation of 6.7.2) Using your work from
Exercise 6.7.2(a), fill in the blank:“We are 95% confident

BIOFEEDBACK CONTROL

n 99 93

yq 13.8 4.0

SE 1.34 1.30

6.7.5 Consider the data in Exercise 6.7.4. Suppose we are
worried that the blood pressure data do not come from
normal distributions. Does this mean that the confidence
interval found in Exercise 6.7.3 is not valid? Why or
why not?

6.7.6 Prothrombin time is a measure of the clotting abili-
ty of blood. For 10 rats treated with an antibiotic and 10
control rats, the prothrombin times (in seconds) were
reported as follows:42
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(a) Construct a 95% confidence interval for the differ-
ence in population means. [Note: Formula (6.7.1)
yields 1,274 degrees of freedom for these data.]

(b) Repeat part (a) using a 99% level of confidence.

6.7.8 In a field study of mating behavior in the Mormon
cricket (Anabrus simplex), a biologist noted that some
females mated successfully while others were rejected by
the males before coupling was complete. The question
arose whether some aspect of body size might play a role
in mating success. The accompanying table summarizes
measurements of head width (mm) in the two groups of
females.44

(a) Construct a 95% confidence interval for the differ-
ence in population means. [Note: Formula (6.7.1)
yields 35.7 degrees of freedom for these data.]

(b) Interpret the confidence interval from part (a) in the
context of this setting.

(c) Using your interval computed in (a) to support your
answer, is there strong evidence that the population
mean head width is indeed larger for successful
maters than unsuccessful maters?

6.7.9 In an experiment to assess the effect of diet on
blood pressure, 154 adults were placed on a diet rich in
fruits and vegetables. A second group of 154 adults was
placed on a standard diet. The blood pressures of the 308
subjects were recorded at the start of the study. Eight
weeks later, the blood pressures of the subjects were
measured again and the change in blood pressure was
recorded for each person. Subjects on the fruits-and-
vegetables diet had an average drop in systolic blood
pressure of 2.8 mm Hg more than did subjects on the
standard diet. A 97.5% confidence interval for the differ-
ence between the two population means is (0.9, 4.7).45

Interpret this confidence interval. That is, explain what
the numbers in the interval mean. (See Examples 6.7.1
and 6.7.3.)

6.7.10 Consider the experiment described in Exercise
6.7.9. For the same subjects, the change in diastolic blood
pressure was 1.1 mm Hg greater, on average, for the sub-
jects on the fruits-and-vegetables diet than for subjects
on the standard diet. A 97.5% confidence interval for the
difference between the two population means is

. Interpret this confidence interval. That is, ex-
plain what the numbers in the interval mean. (See
Examples 6.7.1 and 6.7.3.)

6.7.11 Researchers were interested in the short-term
effect that caffeine has on heart rate. They enlisted a
group of volunteers and measured each person’s resting
heart rate. Then they had each subject drink 6 ounces of
coffee. Nine of the subjects were given coffee containing
caffeine and 11 were given decaffeinated coffee. After
10 minutes each person’s heart rate was measured
again. The data in the table show the change in heart
rate; a positive number means that heart rate went up
and a negative number means that heart rate went
down.46

(-0.3, 2.4)

ANTIBIOTIC CONTROL

n 10 10

yq 25 23

s 10 8

CONTROL PARGYLINE

n 900 905

yq 14.9 46.5

s 5.4 11.7

SUCCESSFUL UNSUCCESSFUL

n 22 17

yq 8.498 8.440

s 0.283 0.262

CAFFEINE DECAF

28 26
11 1
-3 0
14 -4
-2 -4
-4 14
18 16
2 8
2 0

18
-10

n 9 11
yq 7.3 5.9
s 11.1 11.2
SE 3.7 3.4

(a) Construct a 90% confidence interval for the differ-
ence in population means. (Assume that the two
populations from which the data came are normally
distributed.) [Note: Formula (6.7.1) yields 17.2
degrees of freedom for these data.]

(b) Why is it important that we assume that the two pop-
ulations are normally distributed in part (a)?

(c) Interpret the confidence interval from part (a) in the
context of this setting.

6.7.7 The accompanying table summarizes the sucrose
consumption (mg in 30 minutes) of black blowflies inject-
ed with Pargyline or saline (control).43
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(a) Use these data to construct a 90% confidence inter-
val for the difference in mean affect that caffeinated
coffee has on heart rate, in comparison to decaf-
feinated coffee. [Note: Formula (6.7.1) yields 17.3
degrees of freedom for these data.]

(b) Using the interval computed in part (a) to justify
your answer, is it reasonable to believe that caffeine
may not affect heart rates?

(c) Using the interval computed in part (a) to justify
your answer, is it reasonable to believe that caffeine
may affect heart rates? If so, by how much?

(d) Are your answers to (b) and (c) contradictory?
Explain.

6.7.12 Consider the data from Exercise 6.7.11. Given
that there are only a small number of observations in
each group, the confidence interval calculated in
Exercise 6.7.11 is only valid if the underlying popula-
tions are normally distributed. Is the normality condi-
tion reasonable here? Support your answer with
appropriate graphs.

6.7.13 A researcher investigated the effect of green light,
in comparison to red light, on the growth rate of bean
plants. The following table shows data on the heights of
plants (in inches) from the soil to the first branching
stem, two weeks after germination.47 Use these data to
construct a 95% confidence interval for the difference in
mean affect that red light has on bean plant growth, in
comparison to green light. [Note: Formula (6.7.1) yields
38 degrees of freedom for these data.]

6.7.14 The distributions of the data from Exercise 6.7.13
are somewhat skewed, particularly the red group. Does
this mean that the confidence interval calculated in
Exercise 6.7.13 is not valid? Why or why not?

6.8 Perspective and Summary
In this section we place Chapter 6 in perspective by relating it to other chapters and
also to other methods for analyzing a single sample of data. We also present a con-
densed summary of the methods of Chapter 6.

Sampling Distributions and Data Analysis

The theory of the sampling distribution of seemed to require knowl-
edge of quantities— and —that in practice are unknown. In Chapter 6, however,
we have seen how to make an inference about and , including an assess-
ment of the precision of that inference, using only information provided by the
sample. Thus, the theory of sampling distributions has led to a practical method of
analyzing data.

(m1 - m2)m

sm

Y(Section5.3)

RED GREEN

8.4 8.6

8.4 5.9

10.0 4.6

8.8 9.1

7.1 9.8

9.4 10.1

8.8 6.0

4.3 10.4

9.0 10.8

8.4 9.6

7.1 10.5

9.6 9.0

9.3 8.6

8.6 10.5

6.1 9.9

8.4 11.1

10.4 5.5

8.2

8.3

10.0

8.7

9.8

9.5

11.0

8.0
n 17 25
yq 8.36 8.94

s 1.50 1.78

SE 0.36 0.36



Section 6.8 Perspective and Summary 213

In later chapters we will study more complex methods of data analysis. Each
method is derived from an appropriate sampling distribution; in most cases, how-
ever, we will not study the sampling distribution in detail.

Choice of Confidence Level

In illustrating the confidence interval methods, we have often chosen a confidence
level equal to 95%. However, it should be remembered that the confidence level is ar-
bitrary. It is true that in practice the 95% level is the confidence level that is most wide-
ly used; however, there is nothing wrong with an 80% confidence interval, for example.

Characteristics of Other Measures

This chapter has primarily discussed estimation of a population mean, , and the
difference of two population means . In some situations, one may wish to
estimate other parameters of a population such as a population proportion (which
we shall address in Chapter 9).The methods in this chapter can be extended to even
more complex situations; for example, in evaluating a measurement technique,
interest may focus on the repeatability of the technique, as indicated by the standard
deviation of repeated determinations. As another example, in defining the limits of
health, a medical researcher might want to estimate the 95th percentile of serum
cholesterol levels in a certain population. Just as the precision of the mean can be
indicated by a standard error or a confidence interval, statistical techniques are also
available to specify the precision of estimation of parameters such as the population
standard deviation or 95th percentile.

Summary of Estimation Methods

For convenient reference, we summarize in the box the confidence interval methods
presented in this chapter.

(m1 - m2)
m

Standard Error of the Mean

Confidence Interval for 

95% confidence interval:

Critical value from Student’s distribution with .

Intervals with other confidence levels (such as 90%, 99%, etc.) are constructed
analogously (using , , etc.).

The confidence interval formula is valid if (1) the data can be regarded as
a random sample from a large population, (2) the observations are independent,
and (3) the population is normal. If is large then condition (3) is less important.

Standard Error of 

SE(Y1-Y2) = C s12n1
+
s2

2

n2
= 3SE1

2 + SE2
2

yq1 - yq2

n

t0.005t0.05

df = n - 1tt0.025

yq ; t0.025SEY

m

SEY =
s1n
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Supplementary Exercises 6.S.1–6.S.20

6.S.1 To study the conversion of nitrite to nitrate in the
blood, researchers injected four rabbits with a solution of
radioactively labeled nitrite molecules. Ten minutes after
injection, they measured for each rabbit the percentage
of the nitrite that had been converted to nitrate. The
results were as follows:48

(a) For these data, calculate the mean, the standard devi-
ation, and the standard error of the mean.

(b) Construct a 95% confidence interval for the popula-
tion mean percentage.

(c) Without doing any calculations, would a 99% confi-
dence interval be wider, narrower, or the same width
as the confidence interval you found in part (b)?
Why?

6.S.2 The diameter of the stem of a wheat plant is an
important trait because of its relationship to breakage of
the stem, which interferes with harvesting the crop. An
agronomist measured stem diameter in eight plants of
the Tetrastichon cultivar of soft red winter wheat. All
observations were made three weeks after flowering of
the plant. The stem diameters (mm) were as follows:49

The mean of these data is 2.275 and the standard devia-
tion is 0.238.

(a) Calculate the standard error of the mean.

(b) Construct a 95% confidence interval for the popula-
tion mean.

(c) Define in words the population mean that you esti-
mated in part (b). (See Example 6.1.1.)

6.S.3 Refer to Exercise 6.S.2.
(a) What conditions are needed for the confidence inter-

val to be valid?
(b) Are these conditions met? How do you know?
(c) Which of these conditions is most important?

6.S.4 Refer to Exercise 6.S.2. Suppose that the data on
the eight plants are regarded as a pilot study, and that the
agronomist now wishes to design a new study for which
he wants the standard error of the mean to be only 0.03
mm. How many plants should be measured in the new
study?

6.S.5 A sample of 20 fruitfly (Drosophila melanogaster)
larva were incubated at 37 °C for 30 minutes. It is theo-
rized that such exposure to heat causes polytene chromo-
somes located in the salivary glands of the fly to unwind,
creating puffs on the chromosome arm that are visible
under a microscope. The following normal probability

51.1 55.4 48.0 49.5

2.3 2.6 2.4 2.2 2.3 2.5 1.9 2.0

Confidence Interval for 

95% confidence interval:

Critical value from Student’s distribution with

where and 
Confidence intervals with other confidence levels (90%, 99%, etc.) are con-

structed analogously (using , , etc.).
The confidence interval formula is valid if (1) the data can be regarded as

coming from two independently chosen random samples, (2) the observations
are independent within each sample, and (3) each of the populations is normally
distributed. If n is large, condition (3) is less important.

t0.005t0.05

SE2 = s2/1n2.SE1 = s1/1n1
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(SE1

2 + SE2
2)2

SE1
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The average number of puffs for the 20 observations was
4.30, with a standard deviation of 2.03.

(a) Construct a 95% confidence interval for .

(b) In the context of this problem, describe what rep-
resents. That is, the confidence interval from part (a)
is a confidence interval for what quantity?

(c) The normal probability plot shows the dots lining up
on horizontal bands. Is this sort of behavior surpris-
ing for this type of data? Explain.

6.S.6 Over a period of about nine months, 1,353 women
reported the timing of each of their menstrual cycles. For
the first cycle reported by each woman, the mean cycle
time was 28.86 days, and the standard deviation of the
1,353 times was 4.24 days.51

(a) Construct a 99% confidence interval for the popula-
tion mean cycle time.

(b) Because environmental rhythms can influence bio-
logical rhythms, one might hypothesize that the pop-
ulation mean menstrual cycle time is 29.5 days, the
length of the lunar month. Is the confidence interval
of part (a) consistent with this hypothesis?

6.S.7 Refer to the menstrual cycle data of Exercise 6.S.6.

(a) Over the entire time period of the study, the women
reported a total of 12,247 cycles. When all of these
cycles are included, the mean cycle time is 28.22 days.
Explain why one would expect that this mean would
be smaller than the value 28.86 given in Exercise
6.5.6. (Hint: If each woman reported for a fixed time

m

m

period, which women contributed more cycles to
the total of 12,247 observations?)

(b) Instead of using only the first reported cycle as in
Exercise 6.5.6, one could use the first four cycles for
each woman, thus obtaining 
observations. One could then calculate the mean and
standard deviation of the 5,412 observations and
divide the SD by to obtain the SE; this would
yield a much smaller value than the SE found in
Exercise 6.51. Why would this approach not be
valid?

6.S.8 For the 28 lamb birthweights of Example 6.2.2, the
mean is 5.1679 kg, the SD is 0.6544 kg, and the SE is
0.1237 kg.

(a) Construct a 95% confidence interval for the popula-
tion mean.

(b) Construct a 99% confidence interval for the popula-
tion mean.

(c) Interpret the confidence interval you found in part
(a). That is, explain what the numbers in the interval
mean. (Hint: See Examples 6.3.4 and 6.3.5.)

(d) Often researchers will summarize their data in
reports and articles by writing 

. If the researcher of this
study is planning to compare the mean birthweight
of these Rambouillet lambs to another breed,
Booroolas, which style of presentation should she
use?

6.S.9 Refer to Exercise 6.S.8.

(a) What conditions are required for the validity of the
confidence intervals?

(b) Which of the conditions of part (a) can be checked
(roughly) from the histogram of Figure 6.2.1?

(c) Twin births were excluded from the lamb birth-
weight data. If twin births had been included,
would the confidence intervals be valid? Why or
why not?

6.S.10 Researchers measured the number of tree species
in each of 69 vegetational plots in the Lama Forest of
Benin, West Africa.52 The number of species ranged from
a low of 1 to a high of 12. The sample mean was 6.8 and
the sample SD was 2.4, which results in a 95% confidence
interval of (6.2, 7.4). However, the number of tree species
in a plot takes on only integer values. Does this mean that
the confidence interval should be (7, 7)? Or does it mean
that we should round off the endpoints of the confidence
interval and report it as (6, 7)? Or should the confidence
interval really be (6.2, 7.4)? Explain.

6.S.11 As part of a study of natural variation in blood
chemistry, serum potassium concentrations were meas-
ured in 84 healthy women. The mean concentration was
4.36 mEq/l, and the standard deviation was 0.42 mEq/l.

or yq ; SE(5.17 ; 0.12)
;  0.65)yq ; SD (5.17
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plot supports the use of a normal curve to model the dis-
tribution of puffs.50
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The table presents a frequency distribution of the
data.53
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6.S.15 As part of the National Health and Nutrition
Examination Survey (NHANES), hemoglobin levels
were checked for a sample of 1139 men age 70 and
over.55 The sample mean was 145.3 g/l and the standard
deviation was 12.87 g/l.
(a) Use these data to construct a 95% confidence inter-

val for .
(b) Does the confidence interval from part (a) give lim-

its in which we expect 95% of the sample data to lie?
Why or why not?

(c) Does the confidence interval from part (a) give lim-
its in which we expect 95% of the population to lie?
Why or why not?

6.S.16 The following data are 16 weeks of weekly fecal
coliform counts (MPN/100 ml) at Dairy Creek in San
Luis Obispo County, California.56

m

(a) Counts above 225 MPN/100ml are considered
unsafe. What type of one-sided interval (upper- or
lower-bound) would be appropriate to assess the
safety of this creek? Explain your reasoning.

(b) Using 95% confidence, construct the interval chosen
in part (a).

(c) Based on your interval in part (b), what conclusions
can you make regarding the safety of the water?

6.S.17 The blood pressure (average of systolic and dias-
tolic measurements) of each of 38 persons were meas-
ured.57 The average was 94.5 (mm Hg). A histogram of
the data is shown.

(a) Calculate the standard error of the mean.
(b) Construct a histogram of the data and indicate the

intervals and on the histogram.
(See Figure 6.2.1.)

(c) Construct a 95% confidence interval for the popula-
tion mean.

(d) Interpret the confidence interval you found in part
(c). That is, explain what the numbers in the interval
mean. (Hint: See Examples 6.3.4 and 6.3.5.)

6.S.12 Refer to Exercise 6.S.11. In medical diagnosis,
physicians often use “reference limits” for judging blood
chemistry values; these are the limits within which we
would expect to find 95% of healthy people. Would a
95% confidence interval for the mean be a reasonable
choice of “reference limits” for serum potassium in
women? Why or why not?

6.S.13 Refer to Exercise 6.S.11. Suppose a similar study
is to be conducted next year, to include serum potassium
measurements on 200 healthy women. Based on the data
in Exercise 6.S.11, what would you predict would be
(a) the SD of the new measurements?
(b) the SE of the new measurements?

6.S.14 An agronomist selected six wheat plants at ran-
dom from a plot, and then, for each plant, selected 12
seeds from the main portion of the wheat head; by weigh-
ing, drying, and reweighing, she determined the percent
moisture in each batch of seeds. The results were as
follows:54

yq ; SEyq ; SD

Which of the following is an approximate 95% confi-
dence interval for the population mean blood pressure?
Explain.

(i)

(ii)

(iii)

(iv) 94.5 ; 1.3

94.5 ; 2.6

94.5 ; 8

94.5 ; 16

SERUM 
POTASSIUM 

(mEq/I)
NUMBER OF 

WOMEN

[3.1, 3.4) 1

[3.4, 3.7) 2

[3.7, 4.0) 7

[4.0, 4.3) 22

[4.3, 4.6) 28

[4.6, 4.9) 16

[4.9, 5.2) 4

[5.2, 5.5) 3

[5.5, 5.8) 1

Total 84

(a) Calculate the mean, the standard deviation, and the
standard error of the mean.

(b) Construct a 90% confidence interval for the popula-
tion mean.



6.S.18 Suppose you wished to estimate the mean blood
pressure of students at your school to within 2 mmHg
with 95% confidence.

(a) Using the data displayed in Exercise 6.S.17 as pilot
data for your study, determine the (approximate)
sample size necessary to achieve your goals. (Hint:
You will need to use the graph to make some visual
estimates).

(b) Suppose your school is a small private college that
only has 500 students. Would the interval based on
your sample size be valid? Explain. Do you think it
would be too wide or too narrow?

6.S.19 It is known that alcohol consumption during preg-
nancy can harm the fetus. To study this phenomenon, 10
pregnant mice will receive a low dose of alcohol. When
each mouse gives birth, the birthweight of each pup will
be measured. Suppose the mice give birth to a total of 85
pups, so the experimenter has 85 observations of

. To calculate the standard error of the
mean of these 85 observations, the experimenter could
calculate the standard deviation of the 85 observations
and divide by . On what grounds might an objection
be raised to this method of calculating the SE?

6.S.20 Is the nutrition information on commercially pro-
duced food accurate? In one study, researchers sampled
13 packages of a certain frozen reduced-calorie chicken
entrée with a reported calorie content of 252 calories per
package. The mean calorie count of the sampled entrées
was 306 with a sample standard deviation of 51 calories.58

(a) Compute a 95% confidence interval for the popula-
tion mean calorie content of the frozen entrée.

(b) Based on this interval computed in part (a), what do
you think about the reported calorie content for this
entrée?

(c) Manufacturers are punished if they provide less food
than advertised. How does this fact relate to your
results in (a) and (b)?
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